Implementasi Fuzzy Association Rule Mining Untuk Menganalisis Korelasi Pergerakan Harga Antar Bahan Pokok di Provinsi DKI Jakarta

Febriansyah, Adam (2023) Implementasi Fuzzy Association Rule Mining Untuk Menganalisis Korelasi Pergerakan Harga Antar Bahan Pokok di Provinsi DKI Jakarta. Diploma thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 05211640000102-Undergraduate_Thesis.pdf] Text
05211640000102-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 3 October 2025.

Download (2MB) | Request a copy

Abstract

Pemenuhan kebutuhan bahan pangan pokok merupakan aspek yang penting dalam kehidupan. Salah satu isu terkait bahan pangan pokok adalah ketidakstabilan harga membuat kebutuhan ini menjadi sulit terpenuhi. Pada umumnya, harga terbentuk karena adanya interaksi antara penawaran dan permintaan. Jika penawaran tinggi dan permintaan rendah, maka harga akan turun. Sebaliknya, jika penawaran rendah sedangkan permintaan tinggi, maka harga akan naik. Hal ini sedikit berbeda dengan bahan pokok, terutama untuk produk pertanian karena sifatnya yang sangat penting bagi kehidupan. Permintaan akan bahan pokok cenderung tidak stabil (inelastis) terhadap perubahan harga yang menyebabkan harga bahan pokok menjadi fluktuatif saat terjadi perubahan penawaran terutama di Provinsi DKI Jakarta yang merupakan ibukota negara. Penelitian mengenai perubahan harga bahan pokok sangat penting dilakukan bagi pihak Dinas Ketahanan Pangan, Kelautan, dan Pertanian (KPKP) agar dapat menjamin harga bahan pokok tetap terjangkau oleh konsumen. Dengan adanya masalah tersebut diusulkan untuk dilakukan analisis korelasi pergerakan harga antara bahan pangan pokok sektor pertanian yang memiliki harga fluktuatif untuk memprediksi jika ada perubahan harga yang signifikan berdasarkan pergerakan harga bahan pokok harga fluktuatif yang lain. Analisis korelasi pergerakan harga bahan pokok ini disebut dengan Co-Movement Analysis dengan menggunakan metode Fuzzy Association Rule Mining. Fuzzy logic digunakan untuk mengategorikan jenis pergerakan harga bahan pokok dengan data fuzzification. Algoritma frequency pattern growth adalah salah satu metode association rule mining untuk menemukan aturan asosiatif antara pergerakan harga bahan pokok dengan parameter minimum support dan minimum confidence. Hasil dari penelitian ini adalah aturan asosiasi terbaik untuk tiap bahan pokok yang menjadi obyek penelitian. Aturan asosiasi ini dapat digunakan untuk memprediksi pergerakan harga berdasarkan harga bahan pokok yang lain. Dari hasil penelitian ini didapatkan komoditas bawang merah dan bawang putih pergerakan harganya berupa turun rendah (low decrease) ataupun naik rendah (low increase) sering mengikuti satu sama lain. Komoditas cabai merah besar dan cabai merah keriting pergerakan harganya berupa turun rendah (low decrease) ataupun naik rendah (low increase) sering mengikuti satu sama lain. Komoditas cabai rawit hijau fluktuasi harganya, berupa berupa turun rendah (low decrease) ataupun naik rendah (low increase) diikuti dengan fluktuasi harga komoditas cabai rawit merah, begitu pula sebaliknya.
=============================================================================================================================
Food is a basic basic need for humans to be able to sustain life. Therefore, meeting the need for food, especially staples, is one of the important things in life. One of the issues related to staple foods is that price volatility makes this need difficult to fulfill. In general, prices are formed due to the interaction between supply and demand. If the supply is high and the demand is low, the price will fall. Conversely, if the supply is low and the demand is high, the price will rise. This is slightly different from staple foods, especially for agricultural products because they are very important for life. The demand for basic commodities tends to be inelastic with respect to price changes which causes the prices of basic commodities to fluctuate when there is a change in supply, especially in Province of DKI Jakarta which is the nation's capital. Research on co-movement analysis of basic commodities price is very important for the Department of Food Security, Maritime Affairs and Agriculture (KPKP) to ensure that basic commodity prices remain affordable to consumers. Given this problem, it was proposed to carry out a correlation analysis of price movements between staple foods in the agricultural sector which have fluctuating prices to predict if there are significant price changes based on price movements of other fluctuating staple prices. Staple food commodities that have fluctuating prices are shallots, garlic, large red chilies, curly red chilies, green bird's eye chilies, and red bird's eye chilies.
Correlation analysis of price movements of these staples is called Co-Movement Analysis using the Fuzzy Association Rule Mining method. Fuzzy logic is used to categorize types of price movements of basic commodities with data fuzzification. The frequency pattern growth algorithm is an association rule mining method to find associative rules between price movements of basic commodities with support and confidence parameters. The results of this research are the best association rules for each staple that is the object of research. This association rule can be used to predict price movements based on the prices of other staples. From the results of this research, it was found that the price movements of shallots and garlic in the form of low decreases or low increases often follow each other. Commodities large red chilies and curly red chilies price movements in the form of low decreases or low increases often follow each other. Green bird's eye chilies commodity prices fluctuate, in the form of low decreases or low increases followed by fluctuations of red bird's eye chilies commodity prices, and vice versa.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: bahan pokok, pergerakan harga, association rule mining, algortima fp-growth, fuzzy staple food prices, co-movement analyrsis, association rules mining, fp-growth algorithm, fuzzy.
Subjects: Q Science > QA Mathematics > QA76.9.D343 Data mining. Querying (Computer science)
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Information System > 57201-(S1) Undergraduate Thesis
Depositing User: Adam Febriansyah
Date Deposited: 01 Aug 2023 02:39
Last Modified: 01 Aug 2023 02:39
URI: http://repository.its.ac.id/id/eprint/100789

Actions (login required)

View Item View Item