Optimasi Proporsi Smart Street Lighting System pada Penerangan Jalan Umum Kota Surabaya Menggunakan Goal Programming dan Cost Benefit Analysis

Amrizal, Rizki (2023) Optimasi Proporsi Smart Street Lighting System pada Penerangan Jalan Umum Kota Surabaya Menggunakan Goal Programming dan Cost Benefit Analysis. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02411940000020-Undergraduate_Thesis.pdf] Text
02411940000020-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 September 2025.

Download (10MB)

Abstract

Pemkot Surabaya menyediakan Penerangan Jalan Umum PJU (PJU) dalam rangka mewujudkan Smart City. PJU dapat mengurangi kejahatan hingga 20%, meningkatkan persepsi masyarakat akan keamanan jalan, meningkatkan kegiatan ekonomi di malam hari, dan mengurangi kemungkinan kecelakaan fatal hingga 35%. PJU di Surabaya dikelola oleh Dinas Perhubungan (Dishub). Dishub membagi wilayah menjadi tujuh rayon, yakni Rayon Pusat, Selatan, Timur 1, Timur 2, Barat 1, Barat 2, dan Utara. Surabaya memiliki total 99.029 PJU. Tingkat kerusakan PJU di Surabaya sangat tinggi, yaitu sebanyak 95.694 PJU pada tahun 2022. Saat ini, Dishub perlu memenuhi KPI waktu perbaikan, yaitu ≤ 24 jam per keluhan. Proses rekapitulasi keluhan dan pencarian titik PJU memerlukan waktu yang lama. Dishub Surabaya berencana menerapkan Smart Street Lighting System (SSLS) atau Smart PJU. Penerapan Smart PJU akan mereduksi waktu penanganan, konsumsi listrik, dan secara tidak langsung mengurangi emisi karbon. Smart PJU memerlukan biaya investasi besar. Dishub memiliki preferensi urgensi penggantian Smart PJU yang berbeda pada tiap rayon. Oleh karena itu, Dishub perlu melakukan kajian optimasi proporsi Smart PJU dan PJU biasa di setiap rayon preferensi pemenuhan KPI perbaikan dengan mempertimbangkan manfaat dan biaya. Metode yang digunakan adalah Analytical Hierarchy Process (AHP), Cost Benefit Analysis (CBA), dan Mixed Integer Goal Programming (MIGP). Fungsi objektif model optimasi adalah minimasi penyimpangan overachieved Smart PJU baru pada masing-masing goal atau rayon yang telah dikalikan dengan bobot. Decision variable adalah banyaknya PJU biasa dan Smart PJU baru pada masing-masing rayon. Decision variablel harus bernilai integer. Goal Constraints adalah rata-rata waktu perbaikan masing-masing goal atau rayon ≤ 24 jam. System constraints model, di antaranya jumlah pembelian PJU baru harus lebih dari PJU yang rusak dan harus diganti, jumlah pembelian PJU kurang dari jumlah PJU biasa, dan realisasi biaya harus kurang dari nilai anggaran. Berdasarkan hasil optimasi MIGP, pembelian Smart PJU baru adalah sebanyak 11.915 unit. Persentase pembelian Smart PJU dari total 11.915 pada rayon Pusat, Utara, Selatan, Timur 1, Timur 2, Barat 2, Barat 1 secara berurutan adalah 45,79%, 22,35%, 5,47%, 6,70%, 7,87% dan 5,93%. Pembelian PJU biasa adalah sebanyak dua unit dan keseluruhan dibeli untuk Rayon Barat 1. Proporsi PJU biasa dan Smart PJU Surabaya yang paling optimal adalah 86,1% dan 13,9%. Skenario tersebut layak secara finansial karena BCR bernilai 2,059 atau lebih dari satu.
====================================================================================================================================
The Surabaya City Government provides Public Street Lighting to realize Smart City. Street Lighting can reduce crime by up to 20%, increase public perception of road safety, increase economic activity at night, and reduce the possibility of fatal accidents by up to 35%. Street Lighting in Surabaya is managed by the Department of Transportation (Dishub). The Transportation Agency divides the area into seven regions, namely Central, South, East 1, East 2, West 1, West 2, and North Rayons. Surabaya has a total of 99,029 Street Lighting. The damage to Street Lighting in Surabaya is very high, with as many as 95,694 Street Lighting in 2022. The Transportation Agency needs to meet the KPI for repair time, which is ≤ 24 hours per complaint. The process of recapitulating complaints and finding Street Lighting points takes a long time. The Surabaya Transportation Agency plans to implement the Smart Street Lighting System (SSLS). The application of SSLS will reduce handling time and electricity consumption and indirectly reduce carbon emissions. SSLS requires a considerable investment cost. The Transportation Agency prefers the urgency of replacing the SSLS, which differs for each region. Therefore, the Transportation Agency needs to study optimizing the proportion of SSLSs and ordinary Street Lighting in each preference area to fulfill KPI improvements by considering the benefits and costs. The methods used are Analytical Hierarchy Process (AHP), Cost Benefit Analysis (CBA), and Mixed Integer Goal Programming (MIGP). The objective function of the optimization model is to minimize the deviation of the new overachieved SSLS on each goal or rayon, which has been multiplied by the weight. The decision variable is the number of regular Street Lighting and new SSLSs in each region. The decision variable must have an integer value. Goal Constraints are the average repair time for each goal or rayon ≤ 24 hours. The system constraints model, including the number of new Street Lighting purchases, must be more than the damaged Street Lighting and must be replaced, the total Street Lighting purchases must be less than the usual Street Lighting, and the realized costs must be less than the budgeted value. Based on the MIGP optimization results, the purchase of the new SSLS was 11,915 units. The percentage of SSLS purchases of a total of 11,915 in Central, North, South, East 1, East 2, West 2, and West 1 rayon, respectively, were 45.79%, 22.35%, 5.47%, 6.70%, 7 .87%, and 5.93%. The purchase of ordinary Street Lighting was two units, and all of them were purchased for West Rayon 1. The most optimal proportions of regular Street Lighting and SSLS Surabaya were 86.1% and 13.9%. This scenario is financially feasible because the BCR is 2.059 or more than one.

Item Type: Thesis (Other)
Uncontrolled Keywords: Smart Street Lighting System, Mixed Integer Goal Programming, Cost Benefit Analysis, Analytical Hierarchy Process, Optimum Amount, Proporsi Optimal
Subjects: T Technology > T Technology (General) > T57.6 Operations research--Mathematics. Goal programming
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Industrial Engineering > 26201-(S1) Undergraduate Thesis
Depositing User: Rizki Amrizal
Date Deposited: 01 Aug 2023 07:55
Last Modified: 01 Aug 2023 07:55
URI: http://repository.its.ac.id/id/eprint/101152

Actions (login required)

View Item View Item