Ayu, Brillian Pudya Suci Setianing (2023) Estimasi Hasil Fusi Sensor GNSS dan IMU pada Sistem Navigasi Mobil Menggunakan Adaptive Extended Kalman Filter (AEKF). Other thesis, Institut Teknologi Sepuluh Nopember.
Text
06111940000051-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 September 2025. Download (8MB) | Request a copy |
Abstract
Sistem navigasi pada kendaraan di darat umumnya memanfaatkan sensor Global Navigation Satellite System (GNSS) dan Inertial Measurement Unit (IMU) untuk memberikan informasi posisi, kecepatan, dan orientasi. GNSS mampu secara terusmenerus mentransmisikan waktu dan informasi yang diperlukan, sehingga dapat menentukan posisi dengan akurasi tinggi. Namun, akurasi tersebut dapat menurun ketika kendaraan darat melewati ngarai, terowongan, atau kawasan dengan gedung pencakar langit yang memungkinkan GNSS tidak menerima sinyal satelit. Kondisi tersebut dikarenakan jumlah satelit yang diterima kurang dari empat (GNSS signal outage). Sedangkan IMU mampu memberikan pengukuran tanpa dipengaruhi kondisi lingkungan, namun cenderung mengalami akumulasi noise seiring berjalannya waktu. Kondisi tersebut menyebabkan data IMU mengalami penurunan akurasi posisi. Adanya keterbatasan sensor GNSS dan IMU tersebut, maka dapat dilakukan fusi untuk solusi navigasi yang lebih akurat. Salah satu teknik fusi berbasis low-cost yaitu dengan meningkatkan algoritma integrasi tanpa sensor tambahan. Peningkatan algoritma integrasi GNSS/IMU dilakukan dengan model pergerakan mobil pada 3 Degree of Freedom (DOF) menggunakan algoritma Adaptive Extended Kalman Filter. Hasil fusi tersebut dianalisis terhadap referensi yang dilakukan oleh Modul UBlox F9R. Pada kodisi free outage, akurasi posisi dapat ditingkatkan menggunakan algoritma Adaptive Extended Kalman Filter. Hasil fusi GNSS dan IMU mampu meningkatkan akurasi posisi easting dan northing hingga 75.63% dan 88.58% dibanding penggunaan stand-alone GNSS. Namun pada kondisi outage, akurasi posisi tidak dapat ditingkatkan menggunakan metode Adaptive Extended Kalman Filter, sehingga diselesaikan menggunakan double integration. Akurasi yang dihasilkan fusi pada kondisi outage masih tergolong rendah yaitu sebesar 14.708 m pada easting dan 5.644 m pada northing. Hal ini terjadi karena peningkatan algoritma yang diajukan pada penelitian ini belum cukup untuk mengompensasi drift pengukuran sensor IMU tanpa adanya sensor tambahan selama kondisi outage.
====================================================================================================================================
The navigation system in ground vehicles commonly utilizes Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to provide position, velocity, and orientation information. GNSS continuously transmits timing and necessary information, enabling it to determine positions with high accuracy. However, this accuracy can decrease when ground vehicles pass through valleys, tunnels, or areas with skyscrapers that may obstruct GNSS signal reception, resulting in a lack of reception of four or more satellites (GNSS signal outage). On the other hand, IMU can provide measurements unaffected by environmental conditions but tends to accumulate noise over time, leading to a reduction in position accuracy. Due to these limitations of GNSS and IMU sensors, fusion techniques can be employed to achieve more accurate navigation solutions. One of the low-cost fusion techniques involves enhancing the sensorless algorithm integration. The improvement in GNSS/IMU integration algorithm is carried out by modeling the vehicle movement in 3 Degrees of Freedom (DOF) using the Adaptive Extended Kalman Filter algorithm.
The fusion results are analyzed against the reference provided by the U-Blox F9R Module. Under free outage conditions, position accuracy can be enhanced using the Adaptive Extended Kalman Filter algorithm. The GNSS and IMU fusion significantly improve the easting and northing position accuracy by up to 75.63% and 88.58%, respectively, compared to using stand-alone GNSS. However, during outage conditions, the position accuracy cannot be enhanced using the Adaptive Extended Kalman Filter method and is resolved using double integration. The fusion accuracy under outage conditions is relatively low, with 14.708 meters in easting and 5.644 meters in northing. This is due to the fact that the proposed algorithm enhancement in this research is not sufficient to compensate for IMU sensor measurement drift without additional sensors during outage conditions.
Actions (login required)
View Item |