Optimasi Jumlah Pole Pairs dan Vertical Magnet Ratio pada Desain Double Halbach Array AFPM Motor dengan Multi Objective Particle Swarm Optimization

Adinedo, Muzakki (2023) Optimasi Jumlah Pole Pairs dan Vertical Magnet Ratio pada Desain Double Halbach Array AFPM Motor dengan Multi Objective Particle Swarm Optimization. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02111940000058-Undergraduate_Thesis.pdf] Text
02111940000058-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2025.

Download (5MB) | Request a copy

Abstract

Kendaraan listrik merupakan kendaraan yang digerakkan oleh motor listrik. Saat ini, trend penggunaan kendaraan listrik terus meningkat. Untuk meningkatkan performa motor listrik, maka pengembangan motor listrik perlu dilakukan. Berdasarkan arah flux magnetnya, motor Brushless Direct Current (BLDC) dibedakan menjadi 2, yaitu Radial Flux Permanent Magnet (RFPM) dan Axial Flux Permanent Magnet (AFPM). Dimana motor listrik AFPM memiliki beberapa keunggulan dibanding motor listrik RFPM, seperti diameter to length ratio yang besar, air gap dapat diatur dengan mudah, dan memiliki power to weight ratio (PtWR) yang besar. Performa pada motor listrik AFPM dipengaruhi oleh beberapa parameter desain seperti jumlah pole pairs dan vertical magnet ratio.
Penelitian ini berfokus pada pengembangan double halbach array AFPM motor 7200 rotation per minute (RPM) dengan tujuan untuk mendapatkan parameter performa yang optimal dari pengaruh jumlah pole pairs dan besar vertical magnet ratio. Parameter performa yang diperhatikan yaitu PtWR, efisiensi, konstanta kecepatan putar, dan konstanta torsi. Dalam penelitian ini, pendekatan Gaussian Process Regression Models (kriging) digunakan dengan algoritma Multi Objective Particle Swarm Optimization (MOPSO) untuk mendapatkan parameter desain jumlah pole pairs dan besar vertical magnet ratio yang paling optimal. Batasan variabel yang dioptimasi yaitu dari 5 hingga 20 pole pairs dan vertical magnet ratio 0.2 hingga 0.8 dengan target output PtWR 4 kW/kg dan efisiensi 99% serta konstanta kecepatan putar dan torsi yang optimal. Setelah dilakukan penelitian ini, maka didapatkan hasil bahwa parameter desain jumlah pole pairs dan besar vertical magnet ratio yang menghasilkan performa paling optimal yaitu 16 pole pairs dan vertical magnet ratio 0.5 dengan besar PtWR 4.1169 kW/kg, efisiensi 99.2015%, konstanta kecepatan putar 80.0717 RPM/V, dan konstanta torsi 0.14413 Nm/A. Parameter desain jumlah pole pairs akan mempengaruhi lebar magnet serta jumlah dan ukuran slot untuk coil winding yang mempengaruhi berat rotor dan stator serta besar magnetic flux density pada celah udara antara rotor dan stator. Sedangkan parameter desain besar vertical magnet ratio akan mempengaruhi lebar magnet permanen vertikal dan horizontal yang mempengaruhi besar magnetic flux density yang dihasilkan oleh magnet permanen pada celah udara antara rotor dan stator. Sehingga jumlah pole pairs dan besar vertical magnet ratio akan mempengaruhi PtWR, efisiensi, konstanta kecepatan putar, dan konstanta torsi.
===============================================================================================================================
Electric vehicles are vehicles driven by electric motors. Currently, the trend of using electric vehicles continues to increase. To improve the performance of electric motors, the development of electric motors needs to be done. Based on the direction of the magnetic flux, Brushless Direct Current (BLDC) motors are divided into 2, namely Radial Flux Permanent Magnet (RFPM) and Axial Flux Permanent Magnet (AFPM). Where AFPM electric motors have several advantages over RFPM electric motors, such as a large diameter to length ratio, air gap can be adjusted easily, and has a large power to weight ratio (PtWR). The performance of AFPM electric motors is influenced by several design parameters such as the number of pole pairs and the vertical magnet ratio. This research focuses on the development of a double halbach array AFPM motor 7200 rotation per minute (RPM) with the aim of obtaining optimal performance parameters from the influence of the number of pole pairs and the size of the vertical magnet ratio. The performance parameters that are considered are PtWR, efficiency, rotational speed constant, and torque constant. In this study, the Gaussian Process Regression Models (kriging) approach was used with the Multi Objective Particle Swarm Optimization (MOPSO) algorithm to obtain the most optimal design parameters for the number of pole pairs and the size of the vertical magnet ratio. The optimized variables limit are from 5 to 20 pole pairs and a vertical magnet ratio of 0.2 to 0.8 with output targets are a PtWR of 4 kW/kg and an efficiency of 99% as well as optimal rotational speed and torque constant. After conducting this research, the results show that the design parameters are the number of pole pairs and the size of the vertical magnet ratio which produces the most optimal performance, namely 16 pole pairs and a vertical magnet ratio of 0.5 with a PtWR of 4.1169 kW/kg, efficiency of 99.2015%, constant rotational speed of 80.0717 RPM /V, and a torque constant of 0.14413 Nm/A. The design parameters of the number of pole pairs will affect the width of the magnet as well as the number and size of slots for coil windings which affect the weight of the rotor and stator as well as the magnetic flux density in the air gap between the rotor and stator. Meanwhile, the design parameter of the vertical magnet ratio will affect the vertical and horizontal width of the permanent magnet which will affect the magnetic flux density generated by the permanent magnet in the air gap between the rotor and the stator. So the number of pole pairs and the size of the vertical magnet ratio will affect the PtWR, efficiency, rotational speed constant, and torque constant.

Item Type: Thesis (Other)
Uncontrolled Keywords: AFPM, Halbach, Performa, Pole Pairs, Vertical Magnet Ratio, Power to Weight Ratio
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK4055 Electric motor
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Muzakki Adinedo
Date Deposited: 28 Aug 2023 06:48
Last Modified: 28 Aug 2023 06:48
URI: http://repository.its.ac.id/id/eprint/103414

Actions (login required)

View Item View Item