Konstruksi Grup Latin Square Pada Aljabar Max-Plus

Zufar, Muhammad Zulfikar (2023) Konstruksi Grup Latin Square Pada Aljabar Max-Plus. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 06111940000108_Undergraduate_Thesis.pdf] Text
06111940000108_Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 September 2025.

Download (4MB) | Request a copy

Abstract

Aljabar Max-Plus (dinotasikan R_max) merupakan suatu struktur semi-ring idempoten yang terdiri dari himpunan R∪ {-∞} dan dikenai dua operasi biner yaitu operasi “max” dan “+” yang secara berturut-turut dinotasikan sebagai ⊕ dan ⊗ (dalam hal ini operasi “max” dan “+” secara berturut-beturut berperan sebagai operasi biner penjumlahan dan perkalian pada R∪ {-∞}. Elemen identitas terhadap operasi perkalian ⊗ dan penjumlahan ⊕ secara berturut-turut adalah elemen e:=0 dan ϵ:=-∞. Latin square adalah matriks n×n yang mempunyai entri n karakter yang berbeda, dimana pada tiap kolom dan baris masing-masing karakter hanya muncul sekali. Misalkan L_S (n) menotasikan suatu himpunan yang menghimpun semua latin square max-plus berukuran n×n. Pada tulisan ini akan diinvestigasi mengenai konstruksi grup pada L_S (n). Alasan penulis memilih topik ini ialah karena deret perpangkatan latin square max-plus memiliki suatu sifat periodik yang menarik, yang mana nantinya hal tersebut akan ditunjukkan pada tulisan ini. Dari sifat periodik tersebut, dapat diturunkan suatu cara untuk mengkonstruksi grup pada L_S (n).
====================================================================================================================================
Max-Plus Algebra (denoted by Rmax) is an idempotent semi-ring structure consisting of the set R ∪ {−∞} and is subjected to two binary operations, namely the operations
“max” and “+” which are denoted respectively ⊕ and ⊗ ( in this case the operations “max” and “+” respectively act as addition and multiplication binary operations on (R ∪ {−∞}). The identity elements for multiplication ⊗ and addition ⊕ are elements e := 0 and ϵ := −∞, respectively. A Latin square is an n × n matrix that consists of n distinct characters, where each character appears only once in each column and row. Let LS(n) denote a set that contains all n×n max-plus Latin squares. In this paper, we will investigate the construction of groups in LS(n). The reason the author chose this topic is because the power series of max-plus Latin squares exhibits an interesting periodic property, which will be demonstrated in this paper. From this periodic property, a method for constructing groups in LS(n) can be derived

Item Type: Thesis (Other)
Uncontrolled Keywords: Aljabar Max-Plus, Latin Square, Permutasi, Grup, Grup Simetri, Max-Plus Algebra, Latin Square, Permutation, Group, Symmetric Group.
Subjects: Q Science > QA Mathematics
Q Science > QA Mathematics > QA159 Algebra
Q Science > QA Mathematics > QA166 Graph theory
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Muhammad Zulfikar Zufar
Date Deposited: 11 Sep 2023 01:43
Last Modified: 11 Sep 2023 01:43
URI: http://repository.its.ac.id/id/eprint/103849

Actions (login required)

View Item View Item