Peramalan Volatilitas Return Harga Sukuk dengan Model Markov Switching GARCH (Studi Kasus: Franklin Global Sukuk Fund Luxembourg)

Chandrawati, Chandrawati (2023) Peramalan Volatilitas Return Harga Sukuk dengan Model Markov Switching GARCH (Studi Kasus: Franklin Global Sukuk Fund Luxembourg). Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6003211025-Master-Thesis.pdf] Text
6003211025-Master-Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2025.

Download (1MB) | Request a copy

Abstract

Volatilitas merupakan varian yang berubah seiring waktu tertentu. Volatilitas dalam suatu investasi diartikan sebagai ukuran risiko terkait suatu portofolio berdasarkan perubahan harga, sehingga volatilitas merupakan salah satu indikator risiko yang paling penting bagi pelaku dan pengamat pasar keuangan syariah. Salah satu produk pasar keuangan syariah adalah sukuk. Sukuk atau yang biasa dikenal sebagai obligasi syariah merupakan sertifikat dengan nilai yang sama yang mewakili bagian kepemilikan yang sepenuhnya terhadap aset dasar, manfaat, dan jasa dari suatu proyek atau aktivitas investasi khusus. Perubahan harga sukuk memberikan dampak pada return sukuk, sehingga diperlukan manajemen yang baik bagi investor sukuk untuk mendapatkan return yang diharapkan. Franklin Global Sukuk Fund merupakan sukuk yang diterbitkan oleh negara Luxembourg. Data runtun waktu pada Franklin Global Sukuk Fund mengalami perubahan struktur dalam pergeseran volatilitas return sukuk, sehingga diperlukan model yang sesuai untuk menggambarkan hal tersebut. Penelitian ini akan meramalkan volatilitas return sukuk dengan model Markov Switching GARCH standar dan Markov Switching GARCH yang akan diestimasi dengan metode Bayesian yaitu Markov Chain Monte Carlo (MCMC). MSGARCH dapat menganalisis perubahan struktur dan pergeseran volatilitas return sukuk serta meramalkan volatilitas untuk periode ke depan. Hasil peramalan antara metode MSGARCH standar dan MSGARCH-MCMC dibandingkan untuk mengetahui performa masing-masing metode. Akurasi dari model diukur menggunakan DIC. Model MSGRACH-MCMC menghasilkan nilai DIC yang lebih kecil dari model MSGARCH standar.
================================================================================================================================
Volatility is a variance that changes over time. Volatility in an investment is defined as a measure of the risk associated with a portfolio based on price changes, therefore volatility is one of the most important risk indicators for Islamic financial market players and observers. One of the Islamic financial market products is sukuk. Sukuk or sharia bonds are certificates with the same value representing the full ownership of the basic assets, benefits and services of a project or special investment activity. Changes in sukuk prices have an impact on sukuk returns, hence good management is needed for sukuk investors to get the expected return. Franklin Global Sukuk Fund is a sukuk issued by the state of Luxembourg. The time series data on the Franklin Global Sukuk Fund undergoes a structural change in the volatility shift of the sukuk return, hence an appropriate model is needed to describe it. This study will predict the volatility of sukuk returns with the Standard Markov Switching GARCH model and Markov Switching GARCH which will be estimated by the Bayesian method, namely Markov Chain Monte Carlo (MCMC). MSGARCH can analyse structural changes and shifts in the volatility of sukuk returns and predict volatility for future periods. Forecasting results between the standard MSGARCH method and MSGARCH-MCMC are compared to determine the performance of each method. The accuracy of the model is measured using the DIC. The MSGRACH-MCMC model produces lower DIC value than the standard MSGARCH model.

Item Type: Thesis (Masters)
Uncontrolled Keywords: MCMC, MSGARCH, Sukuk, Volatilitas, Volatility
Subjects: H Social Sciences > HA Statistics
Divisions: Faculty of Mathematics and Science > Statistics > 49101-(S2) Master Thesis
Depositing User: Chandrawati Chandrawati
Date Deposited: 07 Aug 2023 01:08
Last Modified: 07 Aug 2023 01:08
URI: http://repository.its.ac.id/id/eprint/104128

Actions (login required)

View Item View Item