Khairunnisa, Nadhirah Adzani (2023) Pemodelan Indeks Pembangunan Gender di Provinsi Nusa Tenggara Timur Menggunakan Regresi Nonparametrik Spline Truncated. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
06211940000021-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2025. Download (3MB) | Request a copy |
Abstract
Indeks Pembangunan Gender (IPG) merupakan perbandingan rasio antara Indeks Pembangunan Manusia (IPM) perempuan dan laki-laki dilihat dari kualitas dimensi umur panjang dan hidup sehat, pengetahuan, dan standar hidup layak. Pada tahun 2021, terdapat beberapa provinsi di Indonesia yang mengalami penurunan nilai IPG dibandingkan satu tahun sebelumnya, salah satunya adalah Provinsi Nusa Tenggara Timur. Dari 22 kabupaten/kota di Provinsi Nusa Tenggara Timur, sebanyak 15 kabupaten ikut mengalami penurunan indeks. Pada penelitian ini, digunakan metode regresi nonparametrik spline truncated untuk memodelkan Indeks Pembangunan Gender di Provinsi Nusa Tenggara Timur tahun 2021 karena terdapat perubahan pola pada sub interval tertentu ketika dilakukan visualisasi data menggunakan scatter plot antara variabel respon yaitu IPG dengan keempat variabel prediktor yang diduga memengaruhinya. Model terbaik dipilih menggunakan titik knot optimal berdasarkan nilai GCV minimum. Dari hasil analisis, diperoleh model terbaik yaitu menggunakan tiga titik knot dengan nilai GCV sebesar 2,931. Adapun keempat variabel prediktor yaitu Rasio Jenis Kelamin (X1), Angka Partisipasi Sekolah SD/Sederajat Penduduk Perempuan (X2), Persentase Penduduk Perempuan yang Mempunyai Keluhan Kesehatan dan Berobat Jalan (X3), dan Persentase Sumbangan Pendapatan Perempuan (X4) memberikan pengaruh yang signifikan terhadap IPG di Provinsi Nusa Tenggara Timur tahun 2021. Model tersebut telah memenuhi asumsi residual yaitu independen, identik, dan berdistribusi normal (IIDN), serta menghasilkan nilai koefisien determinasi (R2) sebesar 98,511%.
===============================================================================================================================
Gender Development Index (GDI) is a ratio comparison between the Human Development Index (HDI) of women and men, observed from the quality of the longevity dimension and health, knowledge, and the standard of well-being. In 2021, there were several provinces in Indonesia experiencing the decrease of GDI compared to the previous year, one of which was the East Nusa Tenggara Province. Of the 22 regencies/cities in East Nusa Tenggara Province, as many as 15 regencies also experienced a decrease of GDI. In this research, the spline truncated nonparametric regression was used to model the Gender Development Index in East Nusa Tenggara Province in 2021 due to pattern changes on certain sub-intervals when being visualized with scatterplot for the response variable (GDI) and each of the predictor variables suspected to influence the GDI. The best model was selected using the optimum knot points based on the minimum GCV score. From the results of analysis, the best model was obtained using three knot points on each variables with the GCV score of 2,931. The four predictor variables are Sex Ratio (X1), Elementary School Enrollment Rate/Equivalent Female Population (X2), Percentage of Females Population Who Have Health Complaints and Street Treatment (X3), and Percentage of Women's Income Contribution (X4) has a significant influence on GDI in the East Nusa Tenggara Province in 2021. The model has fulfilled the residual assumptions of independent, identical, and normally distributed (IIDN), and generate the determination coefficient (R2) of 98,511%.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | East Nusa Tenggara, GCV, Gender Development Index, Indeks Pembangunan Gender, nonparametric regression, Nusa Tenggara Timur, regresi nonparametrik, spline truncated |
Subjects: | Q Science > QA Mathematics > QA278.2 Regression Analysis. Logistic regression |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Nadhirah Adzani Khairunnisa |
Date Deposited: | 06 Sep 2023 03:15 |
Last Modified: | 06 Sep 2023 03:15 |
URI: | http://repository.its.ac.id/id/eprint/104308 |
Actions (login required)
View Item |