Ramadhana, Fauziya Alya (2023) Penerapan Model Geographically Weighted Negative Binomial Regression Pada Jumlah Kasus Tuberkulosis Di Provinsi Jawa Tengah. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
06211940000046-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2025. Download (4MB) | Request a copy |
Abstract
Tuberkulosis atau TB merupakan penyakit menular yang disebabkan oleh bakteri Mycrobacterium tuberculosis. Jawa Tengah menjadi salah satu provinsi dengan kasus TB terbanyak di Indonesia. Pada data jumlah kasus TB di penelitian ini terjadi overdispersion yang diatasi dengan Geographically Weighted Negative Binomial Regression (GWNBR). Tujuan dari penelitian ini adalah mengetahui karakteristik data jumlah kasus TB di Jawa Tengah dan faktor-faktor yang diduga mempengaruhinya pada tahun 2021 serta memodelkan jumlah kasus TB dengan metode GWNBR. Penelitian ini menggunakan pembobot fungsi kernel adaptive gaussian dan kernel adaptive bisquare. Pemodelan GWNBR dilakukan dengan exposure dan tanpa exposure dimana jumlah penduduk sebagai variabel exposure. Hasil penelitian menunjukkan jumlah kasus TB terbanyak ditemukan pada Kabupaten Banyumas sebanyak 3560 kasus, sedangkan yang terendah pada Kabupaten Karanganyar sebanyak 312 kasus. Kriteria AICc menunjukkan GWNBR tanpa exposure terbaik adalah menggunakan adaptive bisquare kernel menghasilkan AICc sebesar 1955,880. Sedangkan GWNBR dengan exposure terbaik juga menggunakan adaptive bisquare kernel diperoleh nilai AICc 1654,555. Hasil pemodelan paling terbaik pada penelitian ini adalah GWNBR dengan exposure menggunakan adaptive bisquare kernel menghasilkan empat kelompok kabupaten/kota berdasarkan variabel yang berpengaruh signifikan yaitu variabel persentase sarana air minum di Inspeksi Kesehatan Lingungan (IKL), rasio tenaga kesehatan masyarakat per 100.000 penduduk, persentase rumah tangga dengan jenis lantai tanah, persentase tempat-tempat umum (TTU) memenuhi syarat kesehatan, dan persentase pengeluaran perkapita sebulan bukan makanan.
============================================================================================================================
Tuberculosis or TB is an infectious disease caused by the bacterium Mycobacterium tuberculosis. Central Java is one of the provinces with the most TB cases in Indonesia. In the data on the number of TB cases in this study there was overdispersion which was overcome by Geographically Weighted Negative Binomial Regression (GWNBR). The purpose of this study is to determine the characteristics of data on the number of TB cases in Central Java and the factors that are thought to influence it in 2021 and to model the number of TB cases using the GWNBR method. This study uses the adaptive gaussian kernel weighting function and the adaptive bisquare kernel function. GWNBR modeling is carried out with exposure and without exposure where the population is the exposure variable. The results showed that the highest number of TB cases was found in Banyumas Regency with 3560 cases, while the lowest was in Karanganyar Regency with 312 cases. The AICc criteria shows that the best GWNBR without exposure is to use an adaptive bisquare kernel resulting in an AICc of 1955,880. Meanwhile, the GWNBR with the best exposure also used an adaptive bisquare kernel to obtain an AICc value of 1654,555. The best modeling results in this study were GWNBR with exposure using an adaptive bisquare kernel resulting in four district/city groups based on variables that have a significant effect, namely the percentage of drinking water facilities in the Environmental Health Inspection, the ratio of public health workers per 100.000 residents, the percentage of houses ground floor type of stairs, the percentage of public places that meet health requirements, and the percentage of non-food per capita monthly expenditure.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Central Java, Exposure, GWNBR, NBR, Tuberculosis, Exposure, GWNBR, Jawa Tengah, NBR, Tuberkulosis |
Subjects: | H Social Sciences > HA Statistics > HA29 Theory and method of social science statistics H Social Sciences > HA Statistics > HA30.6 Spatial analysis Q Science > Q Science (General) > Q180.55.M38 Mathematical models Q Science > QA Mathematics > QA275 Theory of errors. Least squares. Including statistical inference. Error analysis (Mathematics) R Medicine > RA Public aspects of medicine > RA0421 Public health. Hygiene. Preventive Medicine |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Fauziya Alya Ramadhana |
Date Deposited: | 11 Aug 2023 00:36 |
Last Modified: | 11 Aug 2023 00:36 |
URI: | http://repository.its.ac.id/id/eprint/104348 |
Actions (login required)
View Item |