Cipta, Iqbal Maulana (2023) Identifikasi Varietas Padi Pada Citra Satelit Landsat 8 Menggunakan Metode Linear Spectral Unmixing Berdasarkan Data Fenologi (Studi Kasus : Desa Ploso Lor dan Rejuno, Kabupaten Ngawi). Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
6016221016-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2025. Download (4MB) | Request a copy |
Abstract
Kabupaten Ngawi adalah salah satu Kabupaten penghasil padi terbesar di Jawa Timur. Berdasarkan data BPS, pada tahun 2021 Kabupaten Ngawi menghasilkan 786,49 Ribu Ton-GKG yang menempatkan Kabupaten Ngawi sebagai Kabupaten produksi padi kedua setelah Kabupaten Lamongan. Terdapat beberapa cara untuk meningkatkan produksi padi, diantaranya adalah peningkatan produktivitas padi, perluasan areal padi sawah, dan pengelolaan lahan. Peningkatan produktivitas dapat dilakukan dengan penggunaan bibit varietas unggul. Penginderaan jauh dapat digunakan untuk memperoleh informasi tersebut, salah satunya menggunakan metode linear spectral unmixing. Metode linear spectral unmixing digunakan untuk mengidentifikasi besarnya persentase keberadaan suatu objek murni (endmembers) dalam suatu piksel. Hasil yang diperoleh dari penelitian ini adalah citra fraksi endmember tiap varietas. Varietas dominan yang terdeteksi dari hasil pengolahan menggunakan kedua citra satelit adalah varietas Inpari 32. Selanjutnya, dilakukan validasi menggunakan beberapa titik sampel yang tersebar di Desa Ploso Lor dan Rejuno, didapatkan hasil yang sama antara hasil pengolahan data dengan keadaan di lapangan. Dilakukan perhitungan residual error yang kemudian dilakukan perhitungan RMSe pada kedua hasil pengolahan, nilai RMSe terbaik di hasilkan oleh hasil pengolahan menggunakan data citra Landsat 8 dengan nilai RMSe senilai ± 1,2%. Dilakukan juga uji akurasi menggunakan confusion matrix, didapatkan nilai overall accuracy sebesar 86,67%.
=======================================================================================================================================
Ngawi Regency is one of the largest rice-producing regencies in East Java. According to BPS data, in 2021 Ngawi Regency produced 786.49 thousand tons of paddy, placing it as the second-largest paddy-producing regency after Lamongan Regency. There are several ways to increase rice production, including improving rice productivity, expanding paddy fields, and land management. Productivity can be enhanced through the use of superior variety seeds. Remote sensing can be utilized to obtain such information, one of which is through the linear spectral unmixing method. The linear spectral unmixing method is employed to identify the percentage of pure object (endmembers) presence in a pixel. The results obtained from this study are the fractional endmember images for each variety. The dominant variety detected from the processing results using both satellite images is the Inpari 32 variety. Furthermore, validation was conducted using several sample points scattered in the villages of Ploso Lor and Rejuno, yielding consistent results between the data processing and the field conditions. The residual error calculation was performed, followed by the RMSe calculation on both processing results. The best RMSe value was obtained from the processing result using Landsat 8 image data, with an RMSe value of approximately ± 1.2%. Accuracy testing was also conducted using a confusion matrix, resulting in an overall accuracy value of 86.67%.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Kabupaten Ngawi, Linear Spectral Unmixing, Tanaman Padi Ngawi Regency, Rice Plants, Linear Spectral Unmixing |
Subjects: | G Geography. Anthropology. Recreation > GE Environmental Sciences S Agriculture > S Agriculture (General) |
Divisions: | Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Geomatics Engineering > 29101-(S2) Master Thesis |
Depositing User: | Iqbal Maulana Cipta |
Date Deposited: | 09 Aug 2023 08:40 |
Last Modified: | 09 Aug 2023 08:40 |
URI: | http://repository.its.ac.id/id/eprint/104403 |
Actions (login required)
View Item |