Strategi Kontrol Reaktan Untuk Menjaga Performansi Pem Fuel Cell Open Cathode Dalam Menghadapi Gangguan Arus Beban

Maulana, Fariz Risqi (2023) Strategi Kontrol Reaktan Untuk Menjaga Performansi Pem Fuel Cell Open Cathode Dalam Menghadapi Gangguan Arus Beban. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6009221011-Master_Thesis.pdf] Text
6009221011-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2025.

Download (3MB) | Request a copy

Abstract

Penggunaan hidrogen sebagai sumber energi listrik alternatif yang ramah lingkungan semakin diminati. Namun, penggunaan hidrogen pada sistem fuel cell terkendala oleh biaya produksi gas hidrogen yang tinggi, sehingga daya yang dihasilkan tidak sebanding dengan biaya produksi yang dikeluarkan. Selain itu, penggunaan komponen pendukung fuel cell, terutama aktuator kipas sebagai suplai udara dan regulator temperatur, juga mengurangi daya yang dapat digunakan pada beban eksternal. Untuk mengatasi permasalahan ini, dilakukan desain sistem kontrol feedback-feedforward pada laju aliran hidrogen dan temperatur. Simulasi dilakukan menggunakan fuel cell jenis G-HFCS-1kW36V dengan kapasitas nominal 1 kW. Hasil simulasi menunjukkan bahwa penggunaan kontrol feedback�feedforward pada arus beban yang bervariasi, dengan mengatur set-point stoikiometri hidrogen minimum sebesar 1.18 fuel cell berhasil mencapai penghematan energi hidrogen sebesar 2.44% dari kondisi tanpa kontrol dengan nilai efisiensi stack maksimum sebesar 1.49% tanpa terjadi drop tegangan dan daya melebihi batas standar 3%. Selain itu, sistem kontrol feedback-feedforward dapat mempertahankan temperatur pada suhu 50℃ dengan nilai maksimum overshoot sebesar 0.26% dengan total kenaikan efisiensi stack sebesar 14.75% dan kenaikan efisiensi sistem sebesar 15.43% dibandingkan kondisi beroperasi tanpa kontrol temperatur.
====================================================================================================================================
The use of hydrogen as an alternative source of electrical energy that is environmentally friendly is increasingly in demand. However, the use of hydrogen in fuel cell systems is constrained by the high cost of producing hydrogen gas, so that the power generated is not commensurate with the production costs incurred. In addition, the use of fuel cell supporting components, especially the fan actuator as an air supply and temperature regulator, also reduces the power that can be used on external loads. To overcome this problem, a feedback-feedforward control system design was carried out on the hydrogen flow rate and temperature. The simulation was carried out using a fuel cell type G-HFCS-1kW36V with a nominal capacity of 1 kW. The simulation results show that the use of feedback-feedforward control at varying load currents, by setting the minimum hydrogen stoichiometry set-point of 1.18 fuel cell achieves maximum energy savings of 2.44% from uncontrolled conditions with an increase of stack efficiency value by 1.49% without dropping voltage and power above 3% In addition, the feedback-feedforward control system can maintain the temperature at 50℃ with a maximum overshoot value of 0.26% with a total increase in stack efficiency of 14.75% and an increase in system efficiency of 15.43% compared to operating conditions without control.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Proton Exchange Membrane Fuel cell (PEMFC), Kontrol Hidrogen, Kontrol Temperatur, Daya, Efisiensi, Proton Exchange Membrane Fuel cell (PEMFC), Hydrogen Control, Temperature Control, Power, Efficiency
Subjects: Q Science
T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7878 Electronic instruments
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Physics Engineering > 30101-(S2) Master Thesis
Depositing User: Fariz Risqi Maulana
Date Deposited: 17 Aug 2023 13:27
Last Modified: 17 Aug 2023 13:27
URI: http://repository.its.ac.id/id/eprint/104755

Actions (login required)

View Item View Item