Hidayatullah, Muhammad Bagus (2023) Optimalisasi Hasil Pembacaan Sensor Suhu pada Motor Induksi Mesin Bubut menggunakan Metode Moving Average. Diploma thesis, Insitut Teknologi Sepuluh Nopember.
Text
10311910000057-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2025. Download (3MB) | Request a copy |
Abstract
Salah satu penelitian yang saat ini sedang dikembangkan di PT Parametrik yaitu Industrial Internet of Things in Heavy Equipment Industry and Fabrication. Proyek ini menerapkan Industrial Internet of Things di dalam industri manufaktur salah satunya di bidang alat berat. PT Parametrik ingin membuat suatu sistem kompleks untuk kebutuhan industri manufaktur dalam rangka meningkatkan produktivitas mesin. Permasalahan yang terjadi adalah gangguan atau noise yang sering terjadi pada hasil pembacaan sensor suhu pada motor induksi mesin bubut, yang menghasilkan data yang tidak akurat dan dapat mengakibatkan kesalahan dalam pemeliharaan mesin. Dampak negatif dari data yang tidak akurat pada kinerja mesin dan efektivitas TPM, seperti downtime yang lebih sering dan biaya pemeliharaan yang lebih tinggi. Proyek akhir ini bertujuan untuk meningkatkan kualitas hasil pembacaan sensor suhu menggunakan metode Moving Average berbasis Programmable Logic Controller (PLC) pada motor induksi mesin bubut yang nantinya dapat memperbaiki efektivitas dan efisiensi Total Productive Maintenance (TPM). PLC digunakan untuk akuisisi data pembacaan sensor dari mesin bubut. Kemudian melalui Human Machine Interface (HMI), data dari PLC dikirim ke database server menggunakan fitur MQTT. Hasil perhitungan persentase eror sebelum penerapan metode sebesar 11,16%, dimana dapat diketahui akurasi sensor 88,84%. Pada penerapan Single Moving Average, terjadi peningkatan akurasi sebesar 9,69% dengan eror sebesar 1,47%. Penerapan Weighted Moving Average menghasilkan peningkatan akurasi sebesar 9,71% dengan eror sebesar 1,45%. Sementara itu, penerapan Exponential Moving Average menghasilkan peningkatan akurasi sebesar 9,62% dengan eror sebesar 1,54%. Dengan hasil data yang lebih akurat, TPM pada mesin bubut dapat ditingkatkan dan biaya pemeliharaan mesin dapat dikurangi. Penelitian ini dapat menjadi landasan bagi pengembangan metode lain dalam mengoptimalkan hasil pembacaan sensor untuk memperbaiki kinerja mesin secara keseluruhan.
=================================================================================================================================
One of the ongoing researches at PT Parametrik is the "Industrial Internet of Things in Heavy Equipment Industry and Fabrication" project. This project implements the Industrial Internet of Things (IIoT) in the manufacturing industry, particularly in the field of heavy equipment. PT Parametrik aims to develop a complex system to meet the manufacturing industry's needs in enhancing machine productivity. The problem being addressed is the disturbances or noise frequently occurring in temperature sensor readings on lathe machine induction motors, leading to inaccurate data and potential errors in machine maintenance. The negative impacts of inaccurate data on machine performance and Total Productive Maintenance (TPM) effectiveness include increased downtime and higher maintenance costs. The ultimate goal of this project is to improve the quality of temperature sensor readings using the Moving Average method based on Programmable Logic Controller (PLC) on lathe machine induction motors, which will enhance the effectiveness and efficiency of TPM. PLC is employed for sensor data acquisition from the lathe machine. Subsequently, via the Human Machine Interface (HMI), the data from the PLC is transmitted to the database server using MQTT feature. Before the implementation of the method, the error percentage is found to be 11.16%, indicating a sensor accuracy of 88.84%. After applying the Single Moving Average, the accuracy is enhanced by 9.69% with an error of 1.47%. The Weighted Moving Average implementation results in an accuracy improvement of 9.71% with an error of 1.45%. On the other hand, the Exponential Moving Average yields an accuracy increase of 9.62% with an error of 1.54%. With more accurate data, TPM on the lathe machine can be enhanced, and machine maintenance costs can be reduced. This research serves as a foundation for developing other methods to optimize sensor readings and improve overall machine performance.
Item Type: | Thesis (Diploma) |
---|---|
Uncontrolled Keywords: | Sensor Suhu, Moving Average, Industrial, Internet of Things, Programmable Logic Controller, Mesin Bubut, Akurasi Data, Temperature Sensor, Moving Average, Total Productive Maintenance, Industrial, Lathe, Data Accuracy |
Subjects: | T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7872.F5 Filters (Electric) |
Divisions: | Faculty of Vocational > 36304-Automation Electronic Engineering |
Depositing User: | Muhammad Bagus Hidayatullah |
Date Deposited: | 13 Sep 2023 01:00 |
Last Modified: | 22 Sep 2023 09:00 |
URI: | http://repository.its.ac.id/id/eprint/104898 |
Actions (login required)
View Item |