Atikah, Muhana (2023) Analisis Sentimen Ulasan Aplikasi GOBIS Suroboyo Bus pada Situs Google Play Store Menggunakan Metode Naïve Bayes Classifier. Diploma thesis, Institut Teknologi Sepuluh Nopember.
Text
2043221147-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2026. Download (1MB) | Request a copy |
Abstract
Upaya penanganan masalah transportasi umum terus dilakukan oleh pemerintah agar kemacetan lalu lintas dapat berkurang seiring dengan meningkatnya penggunaan kendaraan pribadi. Penanganan masalah tersebut dilakukan terutama di kota-kota besar, salah satunya Kota Surabaya. Pemerintah Kota Surabaya meluncurkan sebuah inovasi untuk melengkapi layanan transportasi umum, yaitu aplikasi GOBIS Suroboyo Bus. Aplikasi ini menawarkan fitur-fitur yang dapat memudahkan penumpang dalam penggunaannya. Namun, kondisi yang didapatkan di lapangan bahwa pengoperasian aplikasi tersebut masih belum optimal. Terdapat kritik dan keluhan masyarakat mengenai kinerja yang tidak sesuai ketika aplikasi tersebut digunakan, seperti durasi menunggu bus yang tidak sesuai dengan aplikasi dan kurangnya layanan rute khusus bus. Selain itu, rating bintang aplikasi di platform Google Play masih tergolong rendah yaitu 3,9/5 pada Januari 2023. Dengan adanya kritik dan keluhan tersebut, maka perlu diketahui sentimen masyarakat terhadap aplikasi GOBIS Suroboyo Bus. Pada penelitian ini dilakukan analisis sentimen dengan data yang diambil dari scraping data review aplikasi GOBIS Suroboyo Bus pada platform Google Play Store. Metode yang digunakan adalah analisis sentimen dengan penerapan algoritma Naïve Bayes Classifier menggunakan bahasa pemrograman Python. Hasil dari penelitian ini diperoleh skor akurasi sebesar 84,49% dari keseluruhan data ulasan dengan proporsi tiap kelas sentimen pengguna aplikasi, diperoleh proporsi sentimen positif sebesar 55,2% dan proporsi sentimen negatif sebesar 44,8%.
=================================================================================================================================
Efforts to handle public transportation problems continue to be made by the government so that traffic congestion can be reduced along with the increasing use of private vehicles. Handling these problems is carried out especially in big cities, one of which is Surabaya City. The Surabaya City Government launched an innovation to complement public transportation services, namely the GOBIS Suroboyo Bus application. This application offers features that can facilitate passengers in its use. However, the conditions obtained in the field that the operation of the application is still not optimal. There are public criticisms and complaints about performance that is not appropriate when the application is used, such as the duration of waiting for the bus does not match the application and the lack of special bus route services. In addition, the application's star rating on the Google Play platform is still relatively low at 3.9/5 in January 2023. With these criticisms and complaints, it is necessary to know the public sentiment towards the GOBIS Suroboyo Bus application. In this study, sentiment analysis was carried out with data taken from scraping the GOBIS Suroboyo Bus application review data on the Google Play platform. The method used is sentiment analysis with the application of the Naïve Bayes Classifier algorithm using the Python programming language. The results of this study obtained an accuracy score of 84.49% from all data reviews with the proportion of each application user sentiment class, obtained a positive sentiment proportion of 55.2% and a negative sentiment proportion of 44.8%.
Item Type: | Thesis (Diploma) |
---|---|
Uncontrolled Keywords: | Analisis Sentimen, Naïve Bayes Classifier, GOBIS Suroboyo Bus, Google Play Store, Sentiment Analysis |
Subjects: | H Social Sciences > HA Statistics Q Science > Q Science (General) |
Divisions: | Faculty of Vocational > 49501-Business Statistics |
Depositing User: | Muhana Atikah |
Date Deposited: | 18 Jan 2024 01:09 |
Last Modified: | 18 Jan 2024 01:09 |
URI: | http://repository.its.ac.id/id/eprint/105541 |
Actions (login required)
View Item |