Perancangan Sistem Navigasi Waypoint Otomatis Pada Drone Menggunakan Fuzzy Logic Controller

Adiprojo, Pasha Haryo (2024) Perancangan Sistem Navigasi Waypoint Otomatis Pada Drone Menggunakan Fuzzy Logic Controller. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02311940000141-Undergraduate_Thesis.pdf] Text
02311940000141-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2026.

Download (3MB) | Request a copy

Abstract

Kendaraan udara tak berawak (UAV), adalah pesawat tanpa pilot, awak, atau penumpang di dalamnya. Sebagian besar UAV ini digunakan dalam militer tetapi sejak awal 1980-an, UAV telah diperkenalkan dalam penggunaan komersial atau rumah tangga juga. Sistem kontrol adalah suatu proses dimana satu atau lebih besaran (variabel, parameter) disesuaikan/dikendalikan sehingga berada dalam kisaran harga tertentu. Dari segi perangkat keras, sistem kontrol terdiri dari berbagai susunan komponen fisik yang mengontrol aliran energi ke mesin atau proses untuk mencapai kinerja yang diinginkan. Maka dari itu, drone dapat diberi control navigasi otomatis, untuk memberi kepraktisan lebih kepada pengguna drone. Maka dari itu, penulis mencoba untuk mencari cara agar dapat mengimplementasikan navigasi otomatis pada drone agar dapat menuju suatu waypoint dan dapat kembali pada target yang bergerak. Dimana penulis menggunakan sistem fuzzy logic agar dapat mengontrol drone menggunakan navigasi otomatis ini. Alasan penulis mengangkat masalah ini, dalam sistem navigasi drone adalah untuk meningkatkan practicalities dalam penggunaan drone pada umumnya. Simulasi sistem fuzzy guidance tracking berhasil dirancang menggunakan dua tahap fuzzy, yaitu heading control dan error heading control. Heading control berfungsi untuk mengatur arah drone menuju dan error heading controller fungsi untuk mengurangi hasil error pada heading control. Performansi drone memiliki hasil nilai standar deviasi jarak tempuh terbesar adalah 0,0015. Algoritma kontrol drone dapat melacak titik yang bergerak dengan cara memperbarui posisi waypoint setiap 0,1 detik.
=================================================================================================================================
An unmanned aerial vehicle (UAV) is an aircraft without a pilot, crew, or passengers on board. Most of these UAVs are used in the military but since the early 1980s, UAVs have been introduced in commercial or household use as well. A control system is a process where one or more quantities (variables, parameters) are adjusted/controlled so that they are within a certain price range. From a hardware perspective, a control system consists of various arrangements of physical components that control the flow of energy to a machine or process to achieve desired performance. Therefore, drones can be given automatic navigation control, to provide more practicality for drone users. Therefore, the author tries to find a way to implement automatic navigation on a drone so that it can go to a waypoint and return to a moving target. Where the author uses a fuzzy logic system to be able to control the drone using automatic navigation. The reason the author raises this issue in drone navigation systems is to increase practicalities in the use of drones in general. The fuzzy guidance tracking system simulation was successfully designed using two fuzzy stages, namely heading control and heading error control. Heading control functions to regulate the direction the drone is heading and the error heading controller functions to reduce error results in heading control. The navigation system simulation results in Matlab show that the drone can return to a moving waypoint, using a previously designed fuzzy control system. Drone performance has the largest standard deviation value for distance traveled, namely 0.0015. The drone control algorithm can track moving points by updating the waypoint position every 0.1 seconds.

Item Type: Thesis (Other)
Additional Information: RSF 621.312 13 PAS p 2024
Uncontrolled Keywords: drone, quadcopter, navigation automation, fuzzy logic controller, drone, quadcopter, navigasi otomatis, fuzzy logic controller
Subjects: Q Science > QA Mathematics > QA9.64 Fuzzy logic
T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL776 .N67 Quadrotor helicopters--Automatic control
U Military Science > UG1242 Drone aircraft--Control systems. (unmanned vehicle)
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Physics Engineering > 30201-(S1) Undergraduate Thesis
Depositing User: Pasha Haryo Adiprojo
Date Deposited: 06 Feb 2024 07:14
Last Modified: 31 Oct 2024 07:33
URI: http://repository.its.ac.id/id/eprint/106300

Actions (login required)

View Item View Item