Azary, Fiqi Qofi (2024) Analisis Propagasi Kerusakan Debonding Material Sandwich Geladak Kapal. Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
6020212002-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2026. Download (10MB) | Request a copy |
Abstract
Inovasi teknologi manufaktur pada material semakin berkembang seiring berjalannya waktu khususnya material infrastruktur dan transportasi. Inovasi material tersebut adalah material sandwich. Aplikasi material sandwich di kapal sangat beragam seperti konstruksi ramp door, inner bottom, geladak kapal penumpang, stiffener plates dan bottom. Keunggulan dari material sandwich yaitu dapat memberikan daya muat lebih dan meringankan bobot konstruksi. Dibalik keunggulannya, material sandwich tidak terlepas dari kekurangan, seperti kerusakan pada ikatan antara faceplate dan core yang disebabkan oleh proses manufaktur, kerusakan debonding pada core sehingga menjadi pemicu terjadinya kerusakan interfacial crack yang semakin luas. Bagian material sandwich yang perlu diteliti kerusakannya terdapat di-core nya seperti debonding di bagian ujung. Penelitian ini akan dilakukan pengujian material sandwich menggunakan metode eksperimen dan numerik. Pembuatan material sandwich dibuat dalam skala laboratorium dengan jumlah spesimen 9 buah dengan 3 variasi ketebalan faceplate dan panjang initial crack debonding yang berbeda. Uji eksperimen yang dilakukan adalah uji tarik, dimana material sandwich diasumsikan sebagai Double Cantilever Beam (DCB) dengan pemberian beban pada displacement. Evaluasi numerik yang digunakan menggunakan software ANSYS Workbench Static Structural dengan metode Virtual Crack Closure Technique (VCCT). Model kerusakan yang akan digunakan adalah delamination fracture mode 1 yang bertujuan mendapatkan besaran strain energy release rate. Hasil yang didapatkan melalui uji eksperimen dengan nilai strain energy release rate yang tertinggi pada Spesimen C yaitu material sandwich dengan ketebalan faceplate 4 mm dan panjang initial crack 75 mm mendapatkan nilai 97.266 J/m² dan dilakukan juga validasi dengan simulasi numerik menggunakan metode virtual crack closure technique. Nilai strain energy release rate menggunakan metode VCCT sebesar 96.172 J/m². Sehingga perbandingan nilai strain energy release rate antara uji eksperimen dan simulasi numerik sebesar 1,1 %. Nilai strain energy release rate yang paling kecil terdapat pada Spesimen D dengan ketebalan faceplate 5 mm dan initial crack 25 mm. Pada uji eksperimen, nilai strain energy release rate mencapai 42.110 J/m², sementara hasil simulasi numerik menggunakan metode virtual crack closure technique (VCCT) memberikan nilai sebesar 41.306 J/m², dengan perbandingan nilai 2%.
=================================================================================================================================
Innovation in manufacturing technology, particularly in infrastructure and transportation materials, has continuously evolved over time. One such innovation is the development of sandwich materials. These materials find diverse applications in ships, including ramp door constructions, inner bottoms, passenger ship decks, stiffener plates, and bottoms. The advantage of sandwich materials lies in their ability to provide increased load capacity while reducing construction weight. Despite these advantages, sandwich materials are not without their shortcomings. Issues like damage to the bonding between face plates and the core, caused during the manufacturing process, and debonding in the core itself lead to the occurrence of wider interfacial cracks. Specific areas in sandwich materials, such as debonding at the ends of the core, need to be researched. This study involves material testing of sandwich structures using both experimental and numerical methods. Laboratory-scale sandwich materials were produced, comprising nine specimens with three variations in face plate thickness and different lengths of initial debonding cracks. Experimental testing involved tensile tests, with the sandwich material assumed to behave as a Double Cantilever Beam (DCB) subjected to displacement-based loading. Numerical evaluations were performed using ANSYS Workbench Static Structural software employing the Virtual Crack Closure Technique (VCCT). The damage model applied focused on delamination in mode 1 fracture, aiming to determine the critical energy strain release rate. The results obtained through experimental testing, with the highest value of strain energy release rate in Specimen C, a sandwich material with a faceplate thickness of 4 mm and an initial crack length of 75 mm, yielded a value of 97,266 J/m². Validation was also conducted through numerical simulation using the Virtual Crack Closure Technique (VCCT). The strain energy release rate value obtained through VCCT was 96,172 J/m². Consequently, the comparison between the experimental and numerical simulation values of strain energy release rate showed a difference of 1.1%. The specimen with the smallest strain energy release rate was Specimen D, featuring a faceplate thickness of 5 mm and an initial crack length of 25 mm. In the experimental test, the strain energy release rate reached 42,110 J/m², while the numerical simulation using the VCCT provided a value of 41,306 J/m², resulting in a 2% difference in the strain energy release rate comparison.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Sandwich, double cantilever beam, energy strain release rate, debonding, virtual crack closure technique |
Subjects: | V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM298.5 Shipbuilding industri. Shipyards |
Divisions: | Faculty of Marine Technology (MARTECH) > Ocean Engineering > 38101-(S2) Master Thesis |
Depositing User: | Fiqi Qofi Azary |
Date Deposited: | 09 Feb 2024 07:49 |
Last Modified: | 09 Feb 2024 07:49 |
URI: | http://repository.its.ac.id/id/eprint/106386 |
Actions (login required)
View Item |