Akbar, Fadilah (2024) Analisis Kendali Quadratic-Quadratic Regulator Model Matematika Penyebaran Penyakit Mulut Dan Kuku Pada Sapi Ternak. Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
6002221006-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 February 2026. Download (3MB) | Request a copy |
Abstract
Penyakit mulut dan kuku (PMK) yang mewabah pada sapi ternak merupakan masalah serius dalam industri peternakan. Penyebaran infeksi sapi ternak dapat melalui kontak langsung, carrier, maupun udara yang menyebabkan penurunan nafsu makan serta pendarahan hebat dari lepasnya kuku kaki. Dampak penyakit ini dapat menyebabkan kematian pada sapi, serta kerugian pada sektor ekonomi maupun pangan. Model matematika dengan menggunakan model SEIR (sapi yang rentan, terpapar, terinfeksi, dan sembuh), dibentuk untuk merancang strategi mitigasi wabah PMK yang optimal. Hasil analisis model yang dibentuk telah memenuhi kriteria well-possed, sehingga model telah valid. Hasil analisis kestabilan menunjukkan model yang dibentuk tidak stabil pada kondisi bebas penyakit maupun endemik. Diberikan desain kendali yaitu vaksinasi serta pengobatan pada sapi ternak menggunakan metode Quadratic-Quadratic Regulator (QQR) yang merupakan pengembangandari Linear Quadratic Regulator (LQR), hasil yang diperoleh menyatakan secara optimal vaksinasi diberikan kepada 45,93% dari jumlah sapi rentan, serta pengobatan diberikan kepada 32,74% jumlah sapi yang terinfeksi. Hasil simulasi dengan metode QQR, lebih optimal dalam menangani wabah PMK pada sapi ternak, didapatkan kinerja serta biaya yang lebih rendah dalam menangani wabah penyebaran PMK apabila dibandingkan dengan hasil dari LQR.
====================================================================================================================================
Foot and mouth disease (FMD) is a significant issue in the livestock industry. The disease can spread to cattle through direct contact, carriers, or airborne transmission, resulting in decreased appetite and severe bleeding from toenail loss. FMD can lead to cattle mortality and economic losses in the food sector. A mathematical model utilizing the SEIR model (susceptible, exposed, infected, and recovered cattle) was developed to create an optimal strategy for mitigating FMD outbreaks. The model analysis results meet the well-posed criteria, indicating its validity. The stability analysis reveals that the model is unstable under disease-free and endemic conditions. Based on the control design, which involves vaccinating and treating cattle using the Quadratic-Quadratic Regulator (QQR) method, a development of the Linear Quadratic Regulator (LQR), optimal vaccination is recommended for 45.93% of vulnerable cattle and treatment for 32.74% of infected cattle. The simulation results obtained using the QQR method indicate that it is more effective in managing FMD outbreaks in cattle, resulting in better performance and lower costs compared to the results obtained using the LQR method.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Epidemic Mathematical Model, Foot and Mouth Disease, Quadratic-Quadratic Regulator, Cattle, Model Matematika Epidemi, Penyakit Mulut dan Kuku, Quadratic-Quadratic Regulator, Sapi Ternak. |
Subjects: | Q Science > QA Mathematics > QA278.3 Structural equation modeling. Q Science > QA Mathematics > QA322.2 Normed linear spaces. Banach spaces Q Science > QA Mathematics > QA372.B9 Differential equations--Numerical solutions. Runge-Kutta formulas--Data processing. Q Science > QA Mathematics > QA401 Mathematical models. Q Science > QA Mathematics > QA402.3 Kalman filtering. Q Science > QA Mathematics > QA611.28 Metric spaces Q Science > QA Mathematics > QA614.8 Differentiable dynamical systems |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44101-(S2) Master Thesis |
Depositing User: | Fadilah Akbar |
Date Deposited: | 12 Feb 2024 00:20 |
Last Modified: | 12 Feb 2024 00:20 |
URI: | http://repository.its.ac.id/id/eprint/106902 |
Actions (login required)
View Item |