Afandi, Muhtad (2024) Optimasi Massa, Equivalent Stress, dan Deformasi Terhadap Tebal, Jumlah Tumpuan, dan Panjang Busur Bracket pada Hubless Wheel Sepeda Listrik ITS Menggunakan BPNN-GA. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
02111840000090-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2026. Download (11MB) | Request a copy |
Abstract
Sepeda Listrik ITS sebagai implementasi dari program Eco Campus ITS dilengkapi dengan beberapa teknologi seperti hubless wheel. Hubless wheel merupakan pelek yang tidak memiliki jari-jari/palang dan hub. Agar beban dari sepeda dapat tersalurkan ke roda dan roda dapat berputar dengan baik, maka desain hubless wheel harus dibuat dengan perhitungan yang matang. Jika tidak demikian, dikhawatirkan bentuk pelek akan menjadi oval karena tumpuan beban tidak tepat di tengah roda sehingga mengurangi durabilitas pelek serta mengganggu kenyamanan dan keamanan dalam berkendara. Oleh karena itu, pada penelitian ini dilakukan optimasi untuk meminimalkan massa, equivalent stress, dan deformasi pada desain tersebut. Massa, equivalent stress, dan deformasi dapat diminimalkan dengan cara mengatur tebal cover dan bracket, jumlah tumpuan, dan panjang busur pada bracket. Pada penelitian ini, tebal divariasikan: 3 mm, 4 mm, dan 5 mm. Jumlah tumpuan divariasikan: 3 buah, 4 buah, dan 5 buah. Serta panjang busur bracket divariasikan: 46°, 56°, dan 66°. Dari variasi tersebut, didapatkan referensi desain hubless wheel dengan massa, equivalent stress dan deformasi minimum sehingga hasil desain lebih optimal daripada desain original. Selain itu, dianalisis juga tingkat keamanan desain dengan melihat nilai equivalent stress dan safety factor dari hubless wheel. Variasi tersebut dibuat model 3D kemudian dilakukan simulasi untuk mendapatkan nilai massa, equivalent stress, safety factor, dan deformasi. Simulasi pembebanan menggunakan standar EN 14764. Data tersebut kemudian dibuat net Backpropagation Neural Network (BPNN) massa, equivalent stress, dan deformasi sebagai fungsi untuk melakukan optimasi menggunakan metode Genetic Algorithm (GA). Desain hasil optimasi kemudian dibandingkan dengan desain original untuk melihat seberap baik optimasi yang dilakukan. Hasil dari penelitian ini diperoleh 27 variasi data dengan rentang massa 2383 – 4325 g, equivalent stress 61,862 – 108,610 MPa, safety factor 1,380 – 2,423, dan deformasi 0,905 – 1,949 mm. Hasil optimasi menggunakan metode BPNN-GA diperoleh referensi desain: tebal 3,318 mm, jumlah tumpuan 5 buah, dan panjang busur bracket 62,028°. Desain hasil optimasi ini memiliki massa 2767 g, equivalent stress 75,718 MPa, safety factor 1,979, dan deformasi 1,245 mm. Setelah dibandingkan dengan desain original, desain hasil optimasi memiliki perubahan: massa turun 47,324%, equivalent stress turun 49,011% , safety factor naik 30,309%, dan deformasi naik 34,488%.
=============================================================================================================================
ITS Electric Bike as an implementation of the ITS Eco Campus program are equipped with several technologies such as hubless wheels. Hubless wheel is a wheel that has no spokes/bars and hub. So that the load from the bike can be distributed to the wheels and the wheels can rotate properly, the hubless wheel design must be made with careful calculations. If this is not the case, it is feared that the shape of the rim will become oval because the weight is not supported right in the middle of the wheel, thereby reducing the durability of the rim and disrupting driving comfort and safety. Therefore, in this research optimization was carried out to minimize mass, equivalent stress, and deformation in the design. Mass, equivalent stress, and deformation can be minimized by adjusting the thickness of the cover and bracket, the number of supports, and the arc length of the bracket. In this research, the thickness is varied: 3 mm, 4 mm, and 5 mm. The number of supports is varied: 3 pieces, 4 pieces and 5 pieces. As well as the length of the arc bracket is varied: 46°, 56°, and 66°. From these variations, a hubless wheel design reference with minimum mass, equivalent stress, and deformation was obtained so that the design results were more optimal than the original design. Apart from that, the design safety level was also analyzed by looking at the equivalent stress and safety factor values of the hubless wheel. These variations are made in 3D models and then simulated to obtain mass values, equivalent stress, safety factor, and deformation. The load simulation uses the EN 14764 standard. The data was then created Backpropagation Neural Network (BPNN) net of mass, equivalent stress, and deformation as a function to perform optimization using Genetic Algorithm (GA) method. The optimized design is then compared with the original design to see how well the optimization was carried out. The results of this research obtained 27 variations of data with mass range 2383 – 4325 g, equivalent stress 61,862 – 108,610 MPa, safety factor 1,380 – 2,423, and deformation 0,905 – 1,949 mm. The optimization results using the BPNN-GA method obtained the referenced design: the thickness 3,318 mm, number of supports 5 pieces, and length of the arc bracket 62,028°. This optimized design has a mass of 2767 g, equivalent stress 75,718 MPa, safety factor 1,979, and deformation 1,245 mm. After comparing with the original design, the optimized design in changes: mass decreased 47,324%, equivalent stress decreased 49,011%, safety factor increased 30,309%, and deformation increased 34,488%.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | sepeda listrik, hubless wheel, backpropagation neural network, genetic algorithm; electric bike |
Subjects: | T Technology > TL Motor vehicles. Aeronautics. Astronautics > TL410 Bicycles and bicycling--Design and construction |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis |
Depositing User: | Muhtad Afandi |
Date Deposited: | 16 Feb 2024 07:45 |
Last Modified: | 16 Feb 2024 07:45 |
URI: | http://repository.its.ac.id/id/eprint/107212 |
Actions (login required)
View Item |