Implementasi Fuzzy Self-Adaptive PID Untuk Tracking Control Autonomous Surface Vehicle

Putra, Edgar Kazakti Widyas (2024) Implementasi Fuzzy Self-Adaptive PID Untuk Tracking Control Autonomous Surface Vehicle. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5019201021-Undergraduate_Thesis.pdf] Text
5019201021-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2026.

Download (7MB) | Request a copy

Abstract

Penggunaan Autonomous Surface Vehicle (ASV) di dunia maritim semakin meningkat seiring dengan keinginan manusia untuk mengurangi risiko korban jiwa sekaligus meningkatkan keandalan. Untuk bisa mendapatkan hasil yang sesuai dengan keinginan, perlu dilakukan tracking control pada ASV agar pergerakan utama, yaitu propulsi, bisa sesuai dengan keinginan pengguna untuk menjalankan suatu misi. Namun, penelitian yang dilakukan sejauh ini masih menggunakan metode yang cenderung mahal, memakan banyak waktu, serta perlu kemampuan processing yang tinggi sehingga kurang ideal untuk diterapkan. Oleh karena itu, penulis mengusulkan penelitian implementasi Fuzzy-PID berbasis eksperimen real. Hasil dari penelitian menunjukkan performa. Desain sistem tracking control ASV menggunakan prinsip nilai error jarak ASV terhadap garis jalur beserta error sudut orientasinya terhadap waypoint selanjutnya. Hasil perkalian PID kedua error kemudian ditambahkan untuk menghasilkan satu nilai sinyal kontrol yang digunakan untuk mengontrol PWM thruster. Fuzzy PID meminimalisir nilai error dengan cara membagi kedua error tersebut kedalam tujuh bagian sesuai dengan range errornya. Setiap error dikalikan dengan nilai gain PID yang membuat sistem semakin presisi karena memiliki nilai gain PID untuk tiap nilai error yang terjadi. Hasil penelitian menunjukkan Fuzzy-self adaptive PID berhasil menurunkan error anglesebesar 9,97% dan error distance sebesar 68,95%. User Interface rviz dirancang dan diatur untuk dapat memunculkan aspek yang ingin diatur dan dimonitor, yaitu titik waypoint, plot grafik error real time untuk error sudut dan jarak, dan sinyal control.
=================================================================================================================================
The use of Autonomous Surface Vehicles (ASV) in the maritime world is increasing in line with human desire to reduce the risk of casualties while increasing reliability. To be able to get results that match your wishes, it is necessary to carry out tracking control on the ASV so that the main movement, namely propulsion, can be in accordance with the user's wishes to carry out a mission. However, the research carried out so far still uses methods that tend to be expensive, take a lot of time, and require high processing capabilities so that they are less than ideal to implement. Therefore, the author proposes research on the implementation of Fuzzy-PID based on real experiments. The results of the research show performance. The ASV tracking control system design uses the principle of the ASV distance error value to the lane line along with the orientation angle error to the next waypoint. The results of multiplying the two PID errors are then added to produce one control signal value which is used to control the PWM thruster. Fuzzy PID minimizes the error value by dividing the two errors into seven parts according to the error range. Each error is multiplied by the PID gain value which makes the system more precise because it has a PID gain value for each error value that occurs. The research results show that Fuzzy-self adaptive PID succeeded in reducing the angle error by 9.97% and the distance error by 68.95%. The rviz user interface is designed and set up to be able to display the aspects you want to regulate and monitor, namely waypoints, real time error graph plots for angle and distance errors, and control signals.

Item Type: Thesis (Other)
Uncontrolled Keywords: ASV, fuzzy-PID, tracking control, user interface, self-adaptive.
Subjects: V Naval Science > VM Naval architecture. Shipbuilding. Marine engineering > VM365 Remote submersibles. Autonomous vehicles.
Divisions: Faculty of Marine Technology (MARTECH) > Marine Engineering > 36202-(S1) Undergraduate Thesis
Depositing User: Putra Edgar Kazakti Widyas
Date Deposited: 28 Feb 2024 05:18
Last Modified: 28 Feb 2024 05:19
URI: http://repository.its.ac.id/id/eprint/107729

Actions (login required)

View Item View Item