Yusuf, Muhammad Sholehuddin (2022) Tentang Struktur dan Sifat-Sifat K-Aljabar. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
06111840000046-Undergraduate_Thesis.pdf Download (1MB) |
Abstract
Aljabar abstrak merupakan salah satu cabang ilmu matematika banyak mengalami perkembangan begitu pesat. Salah satu perkembangan ilmu matematika khususnya dibidang aljabar abstrak adalah pengertian baru dari aljabar. Pada tahun 2005 Karamat Hussain Dar dan Muhammad Akram memperkenalkan suatu pengertian baru yang mengacu pada teori grup dan diberi nama K-Aljabar. Selanjutnya mereka mendefinisikan bahwa K-Aljabar adalah suatu aljabar yang dibangun atas grup G dengan tambahan suatu operasi biner ⊙ sehingga x ⊙ y = x ∗ y −1 , ∀x, y ∈ G dan memenuhi lima aksioma yang diberikan. Konsep yang terdapat dalam K-Aljabar hampir sama dengan konsep yang terdapat dalam grup. Jika dalam grup terdapat konsep subgrup dan homomorpisma, maka dalam K-Aljabar terdapat konsep K-Subaljabar, K-Homomorpisma. Pada tugas akhir ini dibahas mengenai struktur, sifat-sifat, teorema yang umum pada teori grup mengenai K-Aljabar, misalnya K-Subaljabar dan K-Homomorpisma. Selain itu, untuk mempermudah perhitungan contoh-contoh K-Aljabar yang berorder berhingga perhitungannya dilakukan menggunakan SageMath versi 9.3.
==================================================================================================================================
Abstract algebra, which is a branch of mathematics, has experienced rapid development. One of the developments in mathematics, especially in the field of abstract algebra, is the new definition of algebra. In 2005, Karamat Hussain Dar and Muhammad Akram created a new definition that refers to group theory and was named K-Algebra. Karamat Hussain Dar and Muhammad Akram define that K-Algebra is an algebra built on the group G with the addition of a binary operation ⊙ so that x ⊙ y = x ∗ y −1 , ∀x, y ∈ G and satisfies the five axioms given. The concepts contained in K-Algebra are almost the same as the concepts contained in the group. If in a group there are concepts of subgroups and homomorphisms, then in K-Algebra there are concepts of K-Subalgebra, K-Homomorphism. This final project discusses the structure, properties, and general theorems in group theory regarding K-Algebra, for examples K-Subalgebra and K Homomorphism. In addition, to simplify the calculation of K-Algebra examples with finite order, the calculations are carried out using SageMath version 9.3.
Item Type: | Thesis (Other) |
---|---|
Additional Information: | RSMa 512 Yus t-1 2022 |
Uncontrolled Keywords: | Algebra, K-Algebra, K-Subalgebra, K-Homomorphism. |
Subjects: | Q Science > QA Mathematics > QA159 Algebra |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Anis Wulandari |
Date Deposited: | 03 Jul 2024 04:54 |
Last Modified: | 11 Dec 2024 08:33 |
URI: | http://repository.its.ac.id/id/eprint/108107 |
Actions (login required)
View Item |