Pemodelan Terbaik Untuk Faktor-Faktor Yang Mempengaruhi Jumlah Anak Putus Sekolah Jenjang Pendidikan Sekolah Dasar Di Indonesia

Nafisah, Iid Aida (2024) Pemodelan Terbaik Untuk Faktor-Faktor Yang Mempengaruhi Jumlah Anak Putus Sekolah Jenjang Pendidikan Sekolah Dasar Di Indonesia. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 2043201055-Undergraduate_Thesis.pdf] Text
2043201055-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (2MB) | Request a copy

Abstract

Kesempatan memperoleh pendidikan yang layak merupakan hak dan kewajiban yang harus didapatkan masing-masing individu. Berdasarkan laporan Kemendagri hingga bulan Desember 2022 penduduk Indonesia yang tidak sekolah/belum sekolah mencapai 23,8%. Kemudian sebanyak 23,2% atau sebanyak 64,3 juta penduduk Indonesia merupakan tamatan SD. Hal ini bertolak belakang dengan Program Indonesia Pintar (PIP) melalui usia wajib belajar 12 tahun, dimana program ini memastikan anak usia sekolah berada pada satuan pendidikan. Terbukti masih banyak anak-anak yang terpaksa putus sekolah sebelum menyelesaikan pendidikan formal. Laporan Kemdikbudristek menunjukkan tahun 2021 terdapat sekitar 83,7 ribu anak putus sekolah di seluruh Indonesia, dengan jumlah anak putus sekolah tertinggi yaitu pada SD yang mencapai 38.176 jiwa. Jumlah anak putus sekolah SD sempat mengalami penurunan namun tahun 2022 kembali meningkat hingga 40,5 ribu jiwa, dan masih menjadi jumlah terbesar diantara jenjang pendidikan lain. Putus sekolah pada anak menimbulkan beberapa dampak negatif, dan paya untuk mengurangi jumlah anak putus sekolah SD dapat dilakukan dengan mencari faktor-faktor yang diduga mempengaruhinya. Pada penelitian ini menggunakan metode Generalized Poisson Regression (GPR) dan Negative Binomial Regression (NBR) untuk mendapatkan model terbaik yang dapat menangani kondisi overdispersi pada faktor-faktor yang berpengaruh terhadap jumlah anak putus sekolah SD. Hasil perbandingan antara model Generalized Poisson Regression dan Negative Binomial Regression menghasilkan bahwa model Negative Binomial Regression memiliki nilai kriteria AIC paling kecil, sehingga untuk mengatasi kondisi overdispersion pada pemodelan jumlah anak putus sekolah SD di Indonesia tahun 2022 model terbaik yang dipilih yaitu metode Negative Binomial Regression. Faktor-faktor yang berpengaruh signifikan terhadap jumlah anak putus sekolah SD di Indonesia tahun 2022 yaitu persentase penduduk miskin, dan rasio murid terhadap guru.
=================================================================================================================================
The opportunity to obtain proper education is a right and obligation that must be obtained by each individual. Based on the Ministry of Home Affairs report, until December 2022 the Indonesian population who were not in school reached 23.8%. Then as many as 23.2% or as many as 64.3 million Indonesians are elementary school graduates. This contradicts the Smart Indonesia Program (PIP) through 12 years of compulsory education, where this program ensures school-age children are in educational units. It is evident that there are still many children who are forced to drop out of school before completing formal education. The Ministry of Education, Culture and Research report shows that in 2021 there were around 83.7 thousand children dropping out of school throughout Indonesia, with the highest number of dropouts in elementary school reaching 38,176 people. The number of primary school dropouts had decreased but in 2022 it increased again to 40.5 thousand people, and is still the largest number among other education levels. Dropping out of school in children has several negative impacts, and efforts to reduce the number of elementary school dropouts can be done by looking for factors that are thought to affect it. This study uses the Generalized Poisson Regression (GPR) and Negative Binomial Regression (NBR) methods to get the best model that can handle overdispersion conditions on factors that affect the number of elementary school dropouts. The results of the comparison between the Generalized Poisson Regression and Negative Binomial Regression models show that the Negative Binomial Regression model has the smallest AIC criterion value, so to overcome overdispersion conditions in modeling the number of primary school dropouts in Indonesia in 2022 the best model chosen is the Negative Binomial Regression method. Factors that have a significant effect on the number of primary school dropouts in Indonesia in 2022 are the percentage of poor people, and the student-to-teacher ratio.

Item Type: Thesis (Other)
Uncontrolled Keywords: Jumlah anak putus sekolah, Generalized Poisson Regression (GPR), Negative Binomial Regression (NBR), Number of school dropouts
Subjects: H Social Sciences > HA Statistics > HA31.3 Regression. Correlation
Divisions: Faculty of Vocational > 49501-Business Statistics
Depositing User: iid aida nafisah
Date Deposited: 19 Jul 2024 03:03
Last Modified: 19 Jul 2024 03:03
URI: http://repository.its.ac.id/id/eprint/108486

Actions (login required)

View Item View Item