Sachio, Oswald Dew (2024) Klasifikasi Tutupan Lahan Menggunakan Convolutioal Neural Network pada Data Pemetaan Digital Beresolusi Tinggi. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
5024201039_Oswald Dew Sachio_Buku Final.pdf - Accepted Version Restricted to Repository staff only until 1 October 2026. Download (10MB) | Request a copy |
Abstract
Tutupan lahan mencakup semua fitur yang ada di permukaan bumi, termasuk jenis tanah, bentuk lahan, dan struktur yang dibangun oleh manusia, seperti bangunan dan infrastruktur. Tutupan lahan dapat dilihat dengan menggunakan citra satelit beresolusi tinggi. Hasil penangkapan gambar satelit digunakan untuk mengklasifikasi tutupan lahan. Klasifikasi tutupan lahan digunakan untuk perencanaan perkotaan, manajemen sumber daya alam, dan pemantauan kondisi lingkungan. Tugas akhir ini bertujuan untuk mengetahui apakah data beresolusi tinggi dapat digunakan untuk mengklasifikasi tutupan lahan. Selain itu, tugas akhir ini juga bertujuan untuk menentukan model arsitektur CNN apa yang paling sesuai untuk tujuan klasifikasi ini.
====================================================================================================================================
Land cover encompasses all features on the Earth's surface, including types of soil, landforms, and man-made structures such as buildings and infrastructure. High-resolution satellite imagery is used to observe land cover. The images captured by satellites are utilized for classifying land cover, which aids in urban planning, natural resource management, and monitoring environmental conditions. This thesis aims to determine whether high-resolution data can be used for land cover classification. Additionally, it seeks to identify the most suitable CNN architectural model for this classification purpose.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Tutupan Lahan, klasifikasi, CNN Land Cover, classification, CNN |
Subjects: | G Geography. Anthropology. Recreation > G Geography (General) > G70.212 ArcGIS. Geographic information systems. T Technology > TA Engineering (General). Civil engineering (General) > TA1637 Image processing--Digital techniques |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Computer Engineering > 90243-(S1) Undergraduate Thesis |
Depositing User: | Oswald Dew Sachio |
Date Deposited: | 25 Jul 2024 07:10 |
Last Modified: | 25 Jul 2024 07:10 |
URI: | http://repository.its.ac.id/id/eprint/108894 |
Actions (login required)
View Item |