Analisis Ketimpangan Gender di Indonesia Menggunakan Metode Regresi Linear Berganda

Ayuhan, Dioda M. (2024) Analisis Ketimpangan Gender di Indonesia Menggunakan Metode Regresi Linear Berganda. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 10611910000062-Undergraduated_Thesis.pdf] Text
10611910000062-Undergraduated_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (1MB) | Request a copy

Abstract

Kesetaraan gender merupakan salah satu dari 17 Tujuan Pembangunan Berkelanjutan PBB, khususnya tujuan nomor 5. Pada 2010, UNDP memperkenalkan Gender Inequality Index (GII) untuk mengukur ketimpangan gender. Pengukuran ini kemudian diadaptasi oleh Badan Pusat Statistik menjadi Indeks Ketimpangan Gender. Tingginya ketimpangan gender di provinsi Indonesia memerlukan penelitian untuk mengidentifikasi faktor-faktornya menggunakan Regresi Linear Berganda pada data 34 provinsi tahun 2023, dengan 4 variabel yaitu Angka Harapan Hidup (AHH), sumbangan pendapatan, PDRB per kapita, dan rasio jenis kelamin. Hasil penelitian menunjukkan bahwa AHH, sumbangan pendapatan, PDRB per kapita, dan rasio jenis kelamin mempengaruhi ketimpangan gender di Indonesia tahun 2023. Analisis menunjukkan bahwa rata – rata Indeks Ketimpangan Gender (Y) masih tergolong rendah dan mengalami perbedaan yang cukup signifikan antara provinsi DI Yogyakarta dengan IKG terendah dan Nusa Tenggara Barat dengan IKG tertinggi. Rata – rata angka harapan hidup (X1) sudah cukup baik, namun masih terdapat daerah yang angka harapan hidupnya perlu menjadi perhatian, yaitu Sulawesi Barat. Rata – rata sumbangan pendapatan perempuan (X2) sudah cukup baik, namun masih terdapat daerah yang perlu ditingkatkan yaitu Kalimantan Timur. Rata – rata PDRB per Kapita Atas Dasar Harga Konstan perempuan (X3) sudah cukup baik, tetapi masih ada wilayah yang memerlukan perhatian pemerintah, yaitu Nusa Tenggara Timur. rasio jenis kelamin (X4) masih cukup beragam, terutama di daerah Papua Barat dan Kalimantan Utara.
===================================================================================================================================
Gender equality is one of the 17 UN Sustainable Development Goals, particularly goal number 5. In 2010, UNDP introduced the Gender Inequality Index (GII) to measure gender inequality. This measurement was later adapted by the Central Bureau of Statistics into the Gender Inequality Index. The high gender inequality in Indonesian provinces requires research to identify its factors using Multiple Linear Regression on data from 34 provinces in 2023, with 4 variables, namely life expectancy, income contribution, GRDP per capita, and sex ratio. The results of the study show that AHH, income contribution, GRDP per capita, and sex ratio affect gender inequality in Indonesia in 2023. The analysis shows that the average Gender Inequality Index (Y) is still relatively low and experiences a significant difference between the provinces of DI Yogyakarta with the lowest IKG and West Nusa Tenggara with the highest IKG. The average life expectancy (X1) is quite good, but there are still areas whose life expectancy needs attention, namely West Sulawesi. The average contribution of women's income (X2) is quite good, but there are still areas that need to be improved, namely East Kalimantan. The average GRDP per Capita at Constant Prices for women (X3) is quite good, but there are still areas that require government attention, namely East Nusa Tenggara. The sex ratio (X4) is still quite diverse, especially in West Papua and North Kalimantan.

Item Type: Thesis (Other)
Uncontrolled Keywords: Indeks Ketimpangan Gender, Indonesia, Regresi Linear Berganda, Gender Inequality Index, Indonesia, Multiple Linear Regressioon Method
Subjects: H Social Sciences > HA Statistics > HA31.3 Regression. Correlation
Divisions: Faculty of Vocational > 49501-Business Statistics
Depositing User: Dioda Mevena Ayuhan
Date Deposited: 14 Aug 2024 01:58
Last Modified: 14 Aug 2024 01:58
URI: http://repository.its.ac.id/id/eprint/110152

Actions (login required)

View Item View Item