Hermawan, Aditya Raffly (2024) Implementasi RSA Standar dan Modifikasi Chinese Remainder Theorem. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
5002201168-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2026. Download (22MB) | Request a copy |
Abstract
Kemajuan teknologi informasi di Indonesia meningkatkan potensi risiko keamanan, seperti potensi kebocoran data. Dalam matematika memiliki prinsip-prinsip seperti bilangan prima, faktorisasi, modularitas, dan teori grup yang dapat menciptakan skema kriptografi yang sangat sulit ditembus. Salah satu algoritma kriptografi tersebut adalah RSA, sebuah algoritma asimetris yang sistem keamanannya didasarkan pada kesulitan dalam memfaktorkan bilangan prima besar. Dalam algoritma kriptografi, meskipun dianggap kuat dalam menghadapi serangan. Namun, jika diketahui memiliki keterlambatan dalam proses menyandian maka tidak akan dipilih oleh pengguna. Kemudian dilakukan modifikasi terhadap RSA dengan Menggunakan Chinese Remainder Theorem (CRT) dan menunjukkan hasil kecepatan yang lebih baik dari RSA standar. Namun, keunggulan dalam kecepatan bukanlah satu-satunya hal yang perlu dipertimbangkan. Kebutuhan akan memori dalam penggunaan sistem kriptografi juga merupakan hal yang perlu diperhatikan. Dibandingkan dengan RSA, algoritma kriptografi lain seperti Elliptic Curve Cryptography (ECC) memiliki keunggulan dalam penggunaan memori sehingga dapat menjadi alternatif dari RSA standar. Dalam penelitian ini akan dilakukan implementasi antara RSA standar dan modifikasi Chinese Remainder Theorem. Didapatkan bahwa RSA dengan modifikasi Chinese Remainder Theorem memiliki kecepatan dekripsi yang lebih unggul hingga 3.43 kali lebih cepat dibandingkan RSA standar. Sementara penggunaan memori RSA dengan modifikasi Chinese Remainder Theorem setara dengan RSA standar, RSA modifikasi Chinese Remainder Theorem tetap mempertahankan penggunaan memori yang stabil dan tidak mengalami peningkatan yang signifikan.
================================================================================================================================
The advancement of information technology in Indonesia increases the potential for security risks, such as the potential for data leakage. In mathematics, there are principles such as prime numbers, factorization, modularity, and group theory that can create cryptographic schemes that are very difficult to penetrate. One such cryptographic algorithm is RSA, an asymmetric algorithm whose security system is based on the difficulty in factoring large prime numbers. In cryptographic algorithms, although it is considered strong in the face of attacks. However, if it is known to have a delay in the encryption process, it will not be selected by the user. Then a modification was made to RSA using Chinese Remainder Theorem (CRT) and showed better speed results than standard RSA. However, the advantage in speed is not the only thing to consider. The need for memory in the use of cryptographic systems is also something that needs to be considered. Compared to RSA, other cryptographic algorithms such as Elliptic Curve Cryptography (ECC) have advantages in memory usage so that they can be an alternative to standard RSA. In this study, the implementation of standard and modified RSA Chinese Remainder Theorem will be carried out. It was found that RSA with modified Chinese Remainder Theorem has a superior decryption speed of up to 3.43 times faster than standard RSA. While the memory usage of RSA with modified Chinese Remainder Theorem is equivalent to standard RSA, modified RSA Chinese Remainder Theorem maintains stable memory usage and does not experience a significant increase.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Chinese Remainder Theorem, Kriptografi, Memori, Modifikasi, RSA |
Subjects: | Q Science > QA Mathematics > QA76.9.A25 Computer security. Digital forensic. Data encryption (Computer science) Q Science > QA Mathematics > QA9.58 Algorithms |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Aditya Raffly Hermawan |
Date Deposited: | 04 Aug 2024 12:49 |
Last Modified: | 04 Aug 2024 12:49 |
URI: | http://repository.its.ac.id/id/eprint/110319 |
Actions (login required)
View Item |