Multi-Area Economic Dispatch dengan Kurva Biaya Pembangkitan Tidak Mulus Menggunakan Metode Improved Competitive Swarm Optimization

Muhabbah, Satya Adrial (2024) Multi-Area Economic Dispatch dengan Kurva Biaya Pembangkitan Tidak Mulus Menggunakan Metode Improved Competitive Swarm Optimization. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5022201136-Undergraduate_Thesis.pdf] Text
5022201136-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (7MB) | Request a copy

Abstract

Biaya pembangkitan yang ekonomis pada pembangkit thermal sulit untuk ditentukan karena banyak faktor yang perlu dipertimbangkan. Economic dispatch (ED) adalah solusi untuk mendapatkan biaya pembangkitan yang ekonomis dan efisien yaitu dengan perhitungan optimisasi biaya. Multi area economic dispatch (MAED) muncul sebagai perluasan atau perkembangan dari ED. MAED menentukan pembangkitan listrik di setiap area dan pertukaran daya antar area, dengan tujuan meminimalkan total biaya bahan bakar di seluruh area tanpa melanggar batasan sistem. Namun dalam praktiknya, penyelesaian masalah ED pada multi area seringkali melibatkan valve point effect (VPE) dan prohibited operation zone (POZ), menjadikan kurva biaya pembangkitan tidak smooth, non-convex dan non-linear. Penelitian ini memfokuskan pada penggunaan metode algoritma Improved Competitive Swarm Optimization (ImCSO) untuk menyelesaikan masalah multi-area economic dispatch dalam sistem tenaga listrik. ImCSO diuji dalam lima kasus studi, termasuk validasi pada sistem 3-generator dan penerapan pada sistem IEEE 30-bus dengan berbagai skenario,seperti valve point effect dan prohibited operation zone (POZ). Hasil penelitian menunjukkan bahwa ImCSO mampu mencapai biaya pembangkitan yang lebih rendah daripada algoritma CSO dan PSO. Kontribusi utama penelitian ini adalah implementasi algoritma ImCSO yang terbukti lebih efektif dalam menghindari masalah lokal minima, menawarkan solusi yang optimal untuk ED dan MAED dengan potensi penghematan biaya yang signifikan.

========================================================================================================================

Determining the economically optimal generation cost in thermal power plants is complex due to multiple influencing factors. Economic dispatch (ED) optimizes generation costs by calculating the most cost-effective solutions, while multi-area economic dispatch (MAED) extends this approach to manage generation across regions, minimizing overall fuel costs and adhering to system constraints. However, implementing ED in multi-area contexts introduces challenges like valve point effect (VPE) and prohibited operation zone (POZ), complicating the smoothness and linearity of cost fucntion. This research applies the Improved Competitive Swarm Optimization (ImCSO) algorithm to address these complexities in multi area economic dispatch within power systems. ImCSO is evaluated across various scenarios, including validation on a 3-generator system and application to the IEEE 30-bus system, demonstrating its ability to achieve lower costs than traditional methods like Particle Swarm Optimization (PSO) and effectively navigate non-convex and non-linear landscapes. The contribution of this research is the implementation of the ImCSO algorithm, which has demonstrated significant potential to optimize economic dispatch and MAED, providing substantial cost savings and operational efficiencies.

Item Type: Thesis (Other)
Uncontrolled Keywords: Economic Dispatch, ImCSO, Valve Point Effect, Multi-Area Economic Dispatch, Economic Dispatch, ImCSO, Valve Point Effect, Multi-Area Economic Dispatch.
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1322.6 Electric power-plants
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3030 Electric power distribution systems
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis
Depositing User: Satya Adrial Muhabbah
Date Deposited: 31 Jul 2024 01:27
Last Modified: 31 Jul 2024 01:27
URI: http://repository.its.ac.id/id/eprint/110355

Actions (login required)

View Item View Item