Fauzi, Hanif Muhammad (2024) Path Tracking Fixed-wing Unmanned Aerial Vehicle Menggunakan Model Predictive Control. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
5022201106-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2026. Download (5MB) | Request a copy |
Abstract
Dalam beberapa tahun terakhir, penggunaan Unmanned Aerial Vehicle (UAV) atau drone semakin meningkat, baik untuk keperluan komersial, pribadi, maupun militer. Salah satu tantangan utama dalam pengoperasian UAV adalah memastikan navigasi yang efisien dan aman di lingkungan yang kompleks. Penelitian ini berfokus pada pengembangan strategi kontrol path tracking untuk fixed-wing UAV menggunakan Model Predictive Control (MPC). Model Predictive Control (MPC) adalah teknik kontrol canggih yang memprediksi perilaku masa depan sistem dan mengoptimalkan tindakan kontrol berdasarkan solusi dari masalah optimasi pada setiap langkah waktu. Dalam tugas akhir ini, MPC digunakan untuk mengontrol UAV agar dapat mengikuti jalur yang telah ditentukan dengan akurat, dan mencapai tujuan yang diinginkan. Hasil simulasi menunjukkan bahwa pendekatan MPC mampu meningkatkan akurasi lintasan dan efisiensi komputasi dibandingkan dengan metode kontrol tradisional seperti Proportional Integral Derivative (PID). Implementasi MPC pada fixed-wing UAV menunjukkan kinerja yang lebih baik dalam menangani dinamika UAV serta kendala operasional. Tugas akhir ini diharapkan dapat memberikan kontribusi signifikan dalam pengembangan sistem kontrol UAV, khususnya dalam aplikasi path tracking yang membutuhkan ketepatan dan keandalan tinggi. Dengan demikian, teknologi UAV dapat lebih optimal digunakan untuk berbagai keperluan yang membutuhkan navigasi yang presisi dan efisien.
=====================================================================================================================================
In recent years, the use of Unmanned Aerial Vehicles (UAVs) or drones has increased, whether for commercial, personal or military purposes. One of the main challenges in UAV operation is ensuring efficient and safe navigation in complex environments. This research focuses on developing a path tracking control strategy for fixed-wing UAVs using Model Predictive Control (MPC). Model Predictive Control (MPC) is an advanced control technique that predicts the future behavior of the system and optimizes control actions based on the solution of the optimization problem at each time step. In this final project, MPC is used to control the UAV to follow a predetermined path accurately and achieve the desired goal. Simulation results show that the MPC approach is able to improve path accuracy and computational efficiency compared to traditional control methods such as Proportional Integral Derivative (PID). The implementation of MPC on a fixed-wing UAV shows better performance in handling the dynamics of the UAV as well as operational constraints. This final project is expected to contribute significantly to the development of UAV control systems, especially in path tracking applications that require high accuracy and reliability. Thus, UAV technology can be more optimally used for various purposes that require precise and efficient navigation.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | UAV, fixed-wing, path tracking, Model Predictive Control |
Subjects: | T Technology > TJ Mechanical engineering and machinery > TJ217.6 Predictive Control |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis |
Depositing User: | Hanif Muhammad Fauzi |
Date Deposited: | 31 Jul 2024 03:02 |
Last Modified: | 31 Jul 2024 03:02 |
URI: | http://repository.its.ac.id/id/eprint/110796 |
Actions (login required)
View Item |