Sistem Deteksi Dan Tracking Target Bergerak Menggunakan Metode Fuzzy-PID Pada Unmanned Aerial Vehicle

Anisah, Zahra Nur (2024) Sistem Deteksi Dan Tracking Target Bergerak Menggunakan Metode Fuzzy-PID Pada Unmanned Aerial Vehicle. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5022201116 - Undergraduate_Thesis.pdf] Text
5022201116 - Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (10MB) | Request a copy

Abstract

Deteksi dan pelacakan target bergerak telah menjadi aspek penting pada drone, terutama quadcopter, dalam berbagai kegiatan seperti pengawasan, pengintaian, dan aplikasi lainnya. Penerbangan yang stabil dengan kontrol akurasi penerbangan yang tinggi merupakan kunci utama untuk menjalankan fungsi-fungsi tersebut secara efektif. Meskipun quadcopter memiliki kemampuan manuver yang baik, diperlukan metode pengontrolan yang efektif untuk meningkatkan akurasi penerbangan dan mengatasi keterbatasan aktuasi serta ketidakstabilan perilakunya. Metode kontrol PID umum digunakan karena memiliki mekanisme yang sederhana dan memadai dalam mengontrol pergerakan quadcopter. Namun, penyetelan yang cermat diperlukan untuk mempertahankan akurasi penerbangan. Pada penelitian ini, digunakan metode Fuzzy sederhana yang digabungkan dengan metode PID untuk menciptakan kontroler Fuzzy-PID yang dapat menyetel parameter PID sesuai dengan perubahan nilai error dan turunannya. Pengontrol logika Fuzzy berperan dalam menyesuaikan parameter PID secara otomatis berdasarkan rentang parameter PID yang dihasilkan oleh pengontrolan Fuzzy. Model matematika quadcopter DJI Tello digunakan untuk menciptakan kontrol loop posisi dan rotasi yang tepat agar dapat mengikuti berbagai lintasan dengan akurat. Hasil simulasi menunjukkan bahwa metrik kinerja kesalahan pelacakan, seperti MSE dan RMSE, yang dihasilkan oleh metode Fuzzy PID lebih kecil daripada nilai yang diperoleh dari pengontrol PID konvensional. Pendekatan ini cukup menjanjikan untuk diaplikasikan dalam sistem nonlinier.
==================================================================================================================================
Detection and tracking of moving targets have become crucial aspects for drones, especially quadcopters, in various activities such as surveillance, reconnaissance, and other applications. Stable flight with high accuracy in flight control is key to effectively performing these functions. Despite quadcopter's excellent maneuverability, an effective control method is required to improve flight accuracy and overcome its actuation limitations and instability. The PID control method is commonly used due to its simple and adequate mechanism for controlling quadcopter movements. However, precise tuning is necessary to maintain flight accuracy. This study utilizes a simple Fuzzy method combined with the PID method to create a Fuzzy-PID controller that adjusts PID parameters based on changes in error values and their derivatives. The Fuzzy logic controller plays a role in automatically adjusting PID parameters based on the PID parameter range generated by Fuzzy control. The mathematical model of the DJI Tello quadcopter is used to create precise position and rotation control loops to accurately follow various trajectories. Simulation results demonstrate that error tracking performance metrics such as MSE and RMSE produced by the Fuzzy-PID method are smaller than those obtained from conventional PID controllers. This approach shows promising potential for application in nonlinear systems.

Item Type: Thesis (Other)
Uncontrolled Keywords: Deteksi, Pelacakan, PID, Fuzzy-PID, Quadcopter Detection, Tracking, PID, Fuzzy-PID, Quadcopter
Subjects: Q Science
Q Science > Q Science (General) > Q180.55.M38 Mathematical models
Q Science > Q Science (General) > Q325.5 Machine learning. Support vector machines.
T Technology > T Technology (General) > T57.62 Simulation
T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3070 Automatic control
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK6592.A9 Automatic tracking.
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis
Depositing User: Zahra Nur Anisah
Date Deposited: 31 Jul 2024 03:50
Last Modified: 31 Jul 2024 03:50
URI: http://repository.its.ac.id/id/eprint/110982

Actions (login required)

View Item View Item