Analisis Pengaruh Variasi Waktu Solid State Sintering dan Persentase Sukrosa pada Recycle Katoda LiFePO4 terhadap Performa Elektrokimia Baterai Lithium-Ion

Hariyanto, Mahardika Kumara (2024) Analisis Pengaruh Variasi Waktu Solid State Sintering dan Persentase Sukrosa pada Recycle Katoda LiFePO4 terhadap Performa Elektrokimia Baterai Lithium-Ion. Other thesis, Institut Teknologi Sepulum Nopember.

[thumbnail of 5011201083-Undergraduate_Thesis.pdf] Text
5011201083-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (7MB) | Request a copy

Abstract

Baterai lithium-ion adalah salah satu diantara berbagai jenis baterai dimana baterai ini bisa menjadi secondary rechargeable battery yang dapat diisi ulang dan juga ramah lingkungan. Salah satu material yang digunakan sebagai katoda baterai Li-ion adalah LiFePO4. Baterai LFP juga tidak akan selamanya bertahan, semakin banyak dan jauh baterai menempuh siklus charge dan discharge, maka kapasitas baterai akan semakin menurun. Jika semua elemen logam dan elektrolit dalam baterai LiFePO4 bekas tidak didaur ulang, hal ini akan menimbulkan limbah yang sangat besar dan tentunya menghasilkan kerusakan lingkungan ekologis dan pada akhirnya dapat membahayakan kehidupan manusia. Oleh karena itu, daur ulang untuk baterai Li-ion perlu dilakukan. Metode regenerasi yang digunakan dalam penelitian ini adalah solid phase sintering. Dalam penelitian ini, dilakukan analisa mengenai pengaruh waktu sintering pada daur ulang katoda LiFePO4 dan persentase sukrosa sebagai material untuk coating karbon katoda LiFePO4 terhadap performa elektrokimia baterai Li-ion dengan variasi waktu solid phase sintering 4 jam, 6 jam, 8 jam, 10 jam dan persentase sukrosa sebanyak 7%, 9%, dan 11%. Sinterring dilakukan pada suhu 650 oC. Prosedur penelitian terdiri dari proses pre treatment dengan proses discharge, diassembly, grinding, sieving, dan pemisahan PVDF. Kemudian dilakukan regenerasi dengan carbon coating dari glukosa dan sukrosa kemudian proses coating katoda dan assembly baterai pada coin cell CR2032. Pengujian yang dilakukan dengan menggunakan pengujian SEM, XRD, EIS, CV, dan Galvanostatic Charge-Discharge. Dari Penelitian ini, Hasil XRD menunjukkan terbentuknya fasa LiFePO4 olivine. Tidak ada pengototr signifikan yang terdeksi pada setiap spesimen baik pada variasi waktu than sintering maupun variasi persentase sukrosa. Hasil SEM menunjukkan adanya peningkatan ukuran buitr seiring dengan penambahan waktu tahan sedangkan tingkat aglomerasi meningkat seiring dengan bertambahnya persentase sukrosa. Hasil GCD menunjukkan dihasilkan bahwa pada sampel dengan waktu tahan 8 jam, mempunyai kapasitas spesifik paling baik dengan kapasitas discharge 69,35 mAh/g. Sampel dengan waktu tahan 6 jam mempunyai couloumbic efficiency paling tinggi yaitu 97,93 %, nilai Rct paling rendah yaitu 132,73 Ohm.cm2. Sampel G-10-6 juga memiliki reaksi oksidasi-reduksi paling stabil diantara sampel dengan variasi waktu tahan lainnya. Pada variasi persentase sukrosa, sampel dengan persentase sukrosa 7% mempunyai performa elektrokimia paling baik dengan kapasitas discharge 76,13 mAh/g, nilai Rct sebesar 231,81 Ohm.cm2. Sampel S-7-10 juga memiliki reaksi oksidasi-reduksi paling stabil dibandingkan dengan sampel dengn variasi persentase sukrosa lainnya. Sampel yang diregenerasi dengan carbon coating mampu menghasilkan performa elektokimia lebih baik daripada spent LiFePO4. Dari Penelitian ini, dapat disimpulkan bahwa metode regenerasi solid phase sintering dan carbon coating menggunakan glukosa dan sukrosa dapat menjadi metode alternatif dalam proses daur ulang katoda LiFePO4
============================================================
Lithium-ion batteries are one of the various types of batteries where this battery can be a secondary rechargeable battery that can be recharged and is also environmentally friendly. One of the materials used as a Li-ion battery cathode is LiFePO4. LFP batteries will also not last forever, the more the battery goes through charge and discharge cycles, the battery capacity will decrease. If all metal elements and electrolytes in used LiFePO4 batteries are not recycled, this will cause very large waste and of course result in ecological environmental damage and ultimately can endanger human life. Therefore, recycling for Li-ion batteries needs to be done. The regeneration method used in this study is solid phase sintering. In this study, an analysis was carried out on the effect of sintering time on LiFePO4 cathode recycling and the percentage of sucrose as a material for LiFePO4 cathode carbon coating on the electrochemical performance of Li-ion batteries with variations in solid phase sintering time of 4 hours, 6 hours, 8 hours, 10 hours and a percentage of sucrose of 7%, 9%, and 11%. Sintering was carried out at a temperature of 650 oC. The research procedure consisted of a pre-treatment process with a discharge process, assembly, grinding, sieving, and PVDF separation. Then regeneration was carried out with carbon coating from glucose and sucrose, then the cathode coating process and battery assembly on the CR2032 coin cell. Tests were carried out using SEM, XRD, EIS, CV, and Galvanostatic Charge-Discharge tests. From this study, the XRD results showed the formation of the LiFePO4 olivine phase. No significant impurities were detected in each specimen either in the variation of sintering time or the variation of sucrose percentage. The SEM results showed an increase in grain size along with the addition of holding time while the agglomeration level increased along with the increase in the percentage of sucrose. The GCD results showed that the sample with a holding time of 8 hours had the best specific capacity with a discharge capacity of 69.35 mAh/g. The sample with a holding time of 6 hours has the highest couloumbic efficiency of 97.93%, the lowest Rct value of 132.73 Ohm.cm2. Sample G-10-6 also has the most stable oxidation-reduction reaction among samples with other holding time variations. In the sucrose percentage variation, the sample with a sucrose percentage of 7% has the best electrochemical performance with a discharge capacity of 76.13 mAh/g, an Rct value of 231.81 Ohm.cm2. Sample S-7-10 also has the most stable oxidation-reduction reaction compared to samples with other sucrose percentage variations. From this study, it can be concluded that the solid phase sintering and carbon coating regeneration method using glucose and sucrose can be an alternative method in the LiFePO4 cathode recycling process.

Item Type: Thesis (Other)
Uncontrolled Keywords: Baterai, Katoda, LiFePO4, Performa Elektrokimia, Solid Phase Sintering, Sukrosa, Battery, Carbothermic Reduction, Cathode, LiFePO4, Electrochemical Performance, Solid Phase Sintering, Sucrose
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2921 Lithium cells.
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Material & Metallurgical Engineering > 28201-(S1) Undergraduate Thesis
Depositing User: Mahardika Kumara Hariyanto
Date Deposited: 07 Aug 2024 07:16
Last Modified: 07 Aug 2024 07:16
URI: http://repository.its.ac.id/id/eprint/111629

Actions (login required)

View Item View Item