Taufiqurrahman, Yazid (2024) Discrete Event Simulation untuk Penentuan Dispatching Rules pada Stochastic Dynamic Job Shop (Studi Kasus: Proses Detail Part Manufacturing Carbody Kereta Api Di PT X). Other thesis, Institut Teknologi Sepuluh Nopember.
Text
02411940000013-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2026. Download (21MB) | Request a copy |
Abstract
PT X (Persero) merupakan industri manufaktur kereta api. Salah satu proses manufaktur kereta api yang bermasalah dalam melakukan penjadwalan harian adalah proses detail part manufacturing carbody. Proses ini bersifat tidak pasti karena dipengaruhi oleh kedatangan raw material, variasi jumlah part yang diproduksi pada setiap project, perbedaan production routing, dan waktu pemrosesan yang bervariasi. Ketidakpastian tersebut merupakan ciri-ciri dari stochastic dynamic job shop (SDJS). Selain itu, kapasitas dan availabilitas mesin yang terbatas menyebabkan tingginya tumpukan pekerjaan. Pada kondisi eksisting, pekerjaan dipilih secara random karena tidak adanya penjadwalan yang pasti. Hal ini mengakibatkan proses berikutnya menjadi terhambat dan beresiko memperpanjang lead time. Oleh karena itu, diperlukan usulan dispatching rules sebagai dasar aturan penjadwalan yang dapat meminimasi keterlambatan (tardiness) dan durasi waktu pekerjaan berada dalam sistem (flowtime). Discrete-event simulation digunakan untuk melakukan percobaan dengan memodelkan kondisi eksisting workshop. 16 jenis skenario dispatching rules dibuat untuk menguji performanya pada 9 kondisi yang berbeda. Kondisi tersebut berasal dari kombinasi faktor ukuran pekerjaan dan ketetatan due date. Hasil akhir dispatching rules yang terpilih pada masing-masing kondisi dipetakan pada sebuah flowchart. Estimasi perbaikan yang dihasilkan apabila flowchart tersebut diimplementasikan adalah rata-rata penurunan mean flowtime sebesar 22,41%, rata-rata penurunan mean tardiness sebesar 10,45%, dan rata-rata penurunan percentage tardy job sebesar 10,36%.
==============================================================================================================================
PT X (Persero) is a railway manufacturing industry. One of the processes with daily scheduling issues is the railway carbody detail part manufacturing process. This process is uncertain due to the dynamic arrival of raw materials, variations in the number of parts produced for each project, differences in production routing, and stochastic processing times. These uncertainties characterize a Stochastic Dynamic Job Shop (SDJS) problem. Limited machine capacity and availability lead to a high backlog of work. In the existing condition, jobs are selected randomly due to the absence of a specific schedule. This issue causes delays in subsequent processes and risks extending the lead time. Therefore, it is necessary to propose dispatching rules as a basis for scheduling to minimize tardiness and the duration of jobs in the system (flow time). Experiments were conducted by modeling the workshop's existing conditions using discrete-event simulation. Sixteen types of dispatching rule scenarios were created to test their performance under nine different conditions. The conditions were derived from a combination of job size and due date constraints. The final results of the selected dispatching rules in each condition are mapped on a flowchart. The estimated improvements, when the flowchart is implemented, are a 22.41% average decrease in mean flow time, a 10.45% average decrease in mean tardiness, and a 10.36% average decrease in the percentage of tardy jobs.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | dispatching rules, stochastic dynamic job shop, discrete-event simulation, tardiness, flowtime |
Subjects: | T Technology > T Technology (General) > T57.62 Simulation |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Industrial Engineering > 26201-(S1) Undergraduate Thesis |
Depositing User: | Yazid Taufiqurrahman |
Date Deposited: | 22 Aug 2024 07:43 |
Last Modified: | 22 Aug 2024 07:43 |
URI: | http://repository.its.ac.id/id/eprint/112352 |
Actions (login required)
View Item |