Maulana, Zamrori Sudi (2024) Geodesik Ekuatorial pada Ruang-Waktu Kerr-Newman. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
5001201086-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2026. Download (2MB) | Request a copy |
Abstract
Salah satu solusi dari persamaan medan Einstein adalah solusi Kerr-Newman, solusi yang mendeskripsikan struktur ruang-waktu yang diakibatkan oleh lubang hitam bermassa, berotasi, dan bermuatan. Struktur ruang-waktu akibat lubang hitam Kerr-Newman memuat informasi bagaimana persamaan geodesik partikel uji yang ditinjau serta lintasan orbitnya. Dalam penelitian ini, solusi orbit pada partikel uji bermuatan pada metrik Kerr-Newman diperoleh dengan berangkat dari persamaan geodesik umum, kemudian dengan meninjau metrik Kerr-Newman serta tensor elektromagnet sehingga diperoleh persamaan geodesik umum dengan metrik Kerr-Newman. Berikutnya, persamaan tersebut direduksi pada kasus ekuatorial serta konstanta gerak dilibatkan untuk memeroleh persamaan geodesik ekuatorial. Digunakan juga konsep potensial efektif untuk menentukan jenis orbit. Persamaan orbit yang sudah diturunkan lalu diselesaikan secara numerik bersamaan peninjauan potensial efektif untuk menentukan jenis orbit. Penyelesaian numerik diawali dengan substitusi konstanta-konstanta yang relevan, kemudian diambil parameter energi serta plot potensial efektif. Selanjutnya, ditentukan keadaan awal berupa posisi awal dan turunan fungsi posisi terhadap sudut azimuthal. Kemudian, persamaan orbit diselesaikan secara numerik dengan keadaan awal dan konstanta yang dipilih sehingga diperoleh solusi numerik yang kemudian dibuat plot lintasan geodesik. Diambil variasi jenis partikel dengan geodesik timelike, null, dan spacelike. Dari penyelesaian persamaan orbit, diperoleh hasil plot lintasan geodesik yang ditentukan dengan membandingkan nilai energi dengan potensial efektif. Dari hasil yang berupa plot lintasan partikel uji di beragam variasi energi, diperoleh kesimpulan bahwa perbedaan lintasan geodesik tiap partikel, seperti partikel dengan geodesik timelike memungkinkan untuk memiliki orbit lingkaran stabil ataupun tak stabil, elips, dan jatuh, sedangkan pada partikel dengan geodesik null dan spacelike tidak memungkinkan untuk memiliki orbit lingkaran stabil. Sedangkan persamaan lintasan geodesik ketiga partikel tersebut terletak pada orbit jatuh yang tidak bergerak langsung ke singularitas atau pusat lubang hitam melainkan tertahan oleh horizon luar, begitu pula pada lintasan lingkaran stabil yang berada pada wilayah di sekitar horizon luar. Hal tersebut dikarenakan efek frame-dragging yang disebabkan oleh rotasi lubang hitam yang kemudian memaksa partikel uji untuk bergerak beriringan dengan rotasi lubang hitam.
==============================================================================================================================
One solution to Einstein's field equations is the Kerr-Newman solution, a solution that describes the structure of space-time resulting from a black hole with mass, rotation, and charge. The space-time structure resulting from the Kerr-Newman black hole contains information about the geodesic equations of the test particles under consideration and their orbital trajectories. In this research, orbit solutions for charged test particles using the Kerr-Newman metric are obtained by starting from the general geodesic equation, then by reviewing the Kerr-Newman metric and the electromagnetic tensor to obtain the general geodesic equation with the Kerr-Newman metric. Next, this equation is reduced to the equatorial case and the constants of motion are involved to obtain the equatorial geodesic equation. The concept of effective potential is also used to determine the type of orbit. The orbit equation that has been derived is then solved numerically along with reviewing the effective potential to determine the type of orbit. The numerical solution begins by inputting the relevant constants, then taking the energy parameters and the effective potential plot. Next, the initial state is determined in the form of the initial position and the derivative of the position function relative to the azimuthal angle. Then, the orbit equation is solved numerically with the selected initial conditions and constants to obtain a numerical solution from which a geodesic trajectory plot is then created. A variety of particle types were taken with timelike, null and spacelike geodesics. From solving the orbit equation, a geodesic trajectory plot is obtained which is determined by comparing the energy value with the effective potential. From the results in the form of plots of test particle trajectories at various energy variations, it was concluded that the differences in the geodesic trajectories of each particle, such as particles with timelike geodesics, allow them to have stable or unstable circular, elliptical and falling orbits, whereas particles with null and spacelike geodesics it is not possible to have a stable circular orbit. Meanwhile, the similarity of the geodesic trajectories of the three particles lies in their falling orbits which do not move directly to the singularity or center of the black hole but are restrained by the outer horizon, as well as in the stable circular trajectories in the region around the outer horizon. This is due to the frame-dragging effect caused by the rotation of the black hole which then forces the test particles to move in tandem with the rotation of the black hole.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Orbital Equation, Geodesic, Effective Potential, Persamaan Orbit, Geodesik, Potensial efektif |
Subjects: | Q Science Q Science > QB Astronomy Q Science > QC Physics |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Physics > 45201-(S1) Undergraduate Thesis |
Depositing User: | Zamrori Sudi Maulana |
Date Deposited: | 23 Aug 2024 01:17 |
Last Modified: | 23 Aug 2024 01:17 |
URI: | http://repository.its.ac.id/id/eprint/112360 |
Actions (login required)
View Item |