Optimasi Jadwal Pembangunan Kapal Dengan Metode Interval Type-2 Fuzzy Program Evaluation And Review Technique(Studi Kasus: PT ABC)

Prasetiyo, Bagus Dwi (2024) Optimasi Jadwal Pembangunan Kapal Dengan Metode Interval Type-2 Fuzzy Program Evaluation And Review Technique(Studi Kasus: PT ABC). Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5002201135_Undergraduate_Thesis.pdf] Text
5002201135_Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (2MB) | Request a copy

Abstract

Manajemen Proyek Adalah Suatu Cara Untuk Mengatur Jalannya Suatu Proyek, Dimana Hal Ini Bertujuan Untuk Memperoleh Hasil Yang Optimal Sehingga Proyek Bisa Berjalan Seefisien Mungkin. Pada Beberapa Studi Yang Telah Ada, Metode \textit{Critical Path Method - Program Evaluation And Review Technique} (CPM-PERT) Adalah Salah Satu Metode Paling Umum Yang Digunakan, Dan Metode Ini Juga Sudah Dibandingkan Dengan Beberapa Metode Seperti \textit{Interval Type-2 Fuzzy Program Evaluation And Review Technique} (IT2FPERT). Namun Belum Ada Penelitian Yang Membandingkan Metode \textit{Fuzzy Critical Path Method - Fuzzy Program Evaluation And Review Technique} (FCPM-FPERT) Dengan IT2FPERT. Tugas Akhir Ini Membandingkan Durasi Optimal Yang Dihasilkan Serta Probabilitas Direalisasikannya Durasi Optimal Dari Metode FCPM-FPERT Dan IT2FPERT. Hasil Yang Didapatkan, Terlihat Bahwa Durasi Optimal Yang Didapatkan Dari Metode FCPM-FPERT Yakni 1114 Hari Lebih Baik Daripada CPM-PERT Dengan Hasil 1132 Hari Dan IT2FPERT Dengan Hasil 1130.5 Hari. Namun, Probabilitas Direalisasikannya Durasi Optimal Dari FCPM-FPERT Dinilai Lebih Kecil Dengan Hasil 0.52265 Dibandingkan Dengan CPM-PERT Dengan Hasil 0.9999 Dan IT2FPERT 0.9998. Faktor Fuzzy Yang Digunakan Dalam Durasi Mampu Menjawab Ketidakpastian Dalam Proyek. Meski FCPM-FPERT Memiliki Hasil Yang Lebih Baik, Karena Fuzzy Dalam IT2FPERT Lebih Kompleks, Metode Ini Dirasa Lebih Menjawab Ketidakpastian Yang Ada Dengan Probabilitas Yang Sangat Besar. Berdasarkan Hasil Tersebut, Metode IT2FPERT Dinilai Lebih Baik Dalam Menangani Ketidakpastian Dan Menjawab Permasalahan Penjadwalan Dengan Fokus Durasi Optimal.

========================================================================================================================

Project Management Is A Way To Organize The Progress Of A Project With The Aim Of Achieving Optimal Results, Allowing The Project To Run As Efficiently As Possible. In Several Existing Studies, The Critical Path Method - Program Evaluation And Review Technique (CPM-PERT) Is One Of The Most Commonly Used Methods, And This Method Has Also Been Compared With Several Other Methods Such As The Interval Type-2 Fuzzy Program Evaluation And Review Technique (IT2FPERT). However, No Research Has Yet Compared The Fuzzy Critical Path Method - Fuzzy Program Evaluation And Review Technique (FCPM-FPERT) With IT2FPERT. This Final Project Compares The Optimal Duration Produced As Well As The Probability Of Realizing The Optimal Duration Of The FCPM-FPERT And IT2FPERT Methods. The Results Show That The Optimal Duration Obtained From The FCPM-FPERT Method, Which Is 1114 Days, Is Better Than CPM-PERT With A Result Of 1132 Days And IT2FPERT With A Result Of 1130.5 Days. However, The Probability Of Realizing The Optimal Duration From FCPM-FPERT Is Considered Lower With A Result Of 0.52265 Compared To CPM-PERT With A Result Of 0.9999 And IT2FPERT With A Result Of 0.9998. The Fuzzy Factor Used In The Duration Is Able To Address Uncertainty In The Project. Although FCPM-FPERT Has Better Results, Because The Fuzzy In IT2FPERT Is More Complex, This Method Is Considered To Better Address The Existing Uncertainties With A Very High Probability. Based On These Results, The IT2FPERT Method Is Considered Better At Handling Uncertainties And Addressing Scheduling Problems With A Focus On Optimal Duration.

Item Type: Thesis (Other)
Uncontrolled Keywords: Pembangunan kapal, manajemen proyek, Shipbuilding, project management, IT2FSs, FCPM, FPERT, IT2FPERT
Subjects: Q Science > Q Science (General) > Q180.55.M38 Mathematical models
Q Science > QA Mathematics > QA166 Graph theory
Q Science > QA Mathematics > QA276 Mathematical statistics. Time-series analysis. Failure time data analysis. Survival analysis (Biometry)
Q Science > QA Mathematics > QA39.3 Fuzzy mathematics
Q Science > QA Mathematics > QA9.64 Fuzzy logic
Q Science > QA Mathematics > QA248_Fuzzy Sets
T Technology > T Technology (General) > T56.8 Project Management
T Technology > T Technology (General) > T57.6 Operations research--Mathematics. Goal programming
T Technology > T Technology (General) > T58.8 Productivity. Efficiency
T Technology > TS Manufactures > TS155 Production control. Production planning. Production management
T Technology > TS Manufactures > TS157.5 Production scheduling
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Bagus Dwi Prasetiyo
Date Deposited: 06 Aug 2024 19:01
Last Modified: 06 Aug 2024 19:01
URI: http://repository.its.ac.id/id/eprint/112361

Actions (login required)

View Item View Item