Penerapan Metode Ensemble Kalman Filter Dalam Estimasi Variabel Model Penyebaran Penyakit Pneumonia Pada Balita

Permata, Ayu Indah (2024) Penerapan Metode Ensemble Kalman Filter Dalam Estimasi Variabel Model Penyebaran Penyakit Pneumonia Pada Balita. Other thesis, Insititut Teknologi Sepuluh Nopember.

[thumbnail of 5002201039-Undergraduate_Thesis.pdf] Text
5002201039-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (3MB) | Request a copy

Abstract

Pneumonia merupakan penyakit infeksi saluran pernapasan yang menyerang jaringan paru-paru. Pneumonia disebabkan oleh mikroorganisme seperti virus dan menyerang siapa saja, termasuk anak balita (bawah lima tahun). Berdasarkan laporan Kementerian Kesehatan 2022, pneumonia merupakan penyakit pada balita dengan tingkat kematian tertinggi di Indonesia. Sehingga, diperlukan suatu penelitian untuk mengetahui tingkat penyebaran pneumonia melalui model matematika yang tepat. Model matematika penyebaran pneumonia pada balita memiliki beberapa variabel yang ukurannya sulit ditentukan secara langsung, yaitu jumlah individu rentan (S), tervaksin (V), terpapar (E), terinfeksi (I), dan sembuh (R). Oleh sebab itu, pada penelitian ini dilakukan estimasi variabel pada model matematika penyebaran pneumonia menggunakan metode Ensemble Kalman Filter (EnKF). Pada Tugas Akhir ini juga dilakukan simulasi ODE45 untuk mendapatkan hasil penyelesaian model. Selanjutnya, hasil masing-masing simulasi dibandingkan dengan data real menggunakan MAPE untuk mengetahui tingkat akurasinya. Berdasarkan penelitian yang dilakukan, diperoleh nilai MAPE estimasi variabel EnKF sebesar 0,12122% nilai MAPE penyelesaian model menggunakan ODE45 adalah sebesar 19,52437%. Nilai MAPE penyelesaian model lebih besar, sebab model matematika dibentuk berdasarkan asumsi-asumsi tertentu sehingga tidak sepenuhnya menggambarkan dinamika penyebaran pneumonia. Sementara itu, metode Ensemble Kalman Filter menghasilkan estimasi yang lebih akurat dan mendekati kondisi real, sebab metode ini terus memperbarui hasil prediksi berdasarkan data real yang diketahui.
=================================================================================================================================
Pneumonia is an infectious respiratory disease that attacks lung tissue. Pneumonia is caused by microorganisms such as viruses and can affect anyone, including children under five years old. According to the 2022 report by the Ministry of Health, pneumonia is the leading cause of death in children under five in Indonesia. Therefore, it is necessary to conduct a study to determine the spread of pneumonia through an appropriate mathematical model. The mathematical model of pneumonia spread among children under five has several variables whose values are difficult to determine directly, namely the number of susceptible individuals (S), vaccinated (V), exposed (E), infected (I), and recovered (R). Therefore, in this study, the estimation of variables in the mathematical model of pneumonia spread is carried out using the Ensemble Kalman Filter (EnKF) method. This final project also conducted ODE45 simulations to obtain model solutions. Subsequently, the results of each simulation were compared with real data using MAPE to determine their accuracy. Based on the research conducted, the MAPE value for the EnKF variable estimation is 0,12122% and the MAPE value for the model solution using ODE45 is 19,52437%. The higher MAPE value of the model solution is due to the mathematical model being based on certain assumptions, which do not fully represent the dynamics of pneumonia spread. In contrast the Ensemble Kalman Filter method produces more accurate estimates and is closer to real conditions, as it continuously updates prediction results based on known real data.

Item Type: Thesis (Other)
Uncontrolled Keywords: Ensemble Kalman Filter, Estimasi, MAPE, Model Matematika, Pneumonia
Subjects: Q Science > QA Mathematics
Q Science > QA Mathematics > QA401 Mathematical models.
Q Science > QA Mathematics > QA402.3 Kalman filtering.
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Ayu Indah Permata
Date Deposited: 06 Aug 2024 02:28
Last Modified: 06 Aug 2024 02:28
URI: http://repository.its.ac.id/id/eprint/112508

Actions (login required)

View Item View Item