Pendekatan Plithogenic Neutrosophic Soft Set untuk Peramalan Deret Waktu Multi Atribut

Aini, Qonita Qurratu (2024) Pendekatan Plithogenic Neutrosophic Soft Set untuk Peramalan Deret Waktu Multi Atribut. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6002231017-Master_Thesis.pdf] Text
6002231017-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (5MB) | Request a copy

Abstract

Peramalan deret waktu adalah proses penting dalam pengambilan keputusan yang melibatkan prediksi nilai masa depan berdasarkan data historis. Dalam penelitian ini, dieksplorasi lebih dalam penggunaan konsep plithogenic soft set dalam peramalan deret waktu multi atribut. Penelitian ini mengembangkan model peramalan deret waktu multi atribut menggunakan pendekatan plithogenic neutrosophic soft set (P-NSS) dan mengevaluasi performansinya dengan membandingkannya dengan model neutrosophic soft set (NSS) yang telah ada. Model ini diterapkan pada prediksi nilai yield obligasi Indonesia berdasarkan data harian, dengan mengidentifikasi tiga atribut penting yaitu fluktuasi yield penutupan, yield pembukaan, dan amplitudo harian sebagai variabel prediktor. Hasil penelitian menunjukkan bahwa model P-NSS mampu menghasilkan prediksi dengan error yang rendah dan distribusi error yang konsisten, menunjukkan keunggulan dalam akurasi prediksi dibandingkan model NSS.
==============================================================================
Time series forecasting is a crucial process in decision-making that involves predicting future values based on historical data. In this study, we explore the use of the plithogenic soft set concept in multi-attribute time series forecasting. This research creates a multi-attribute time series forecasting model using the plithogenic neutrosophic soft set (P-NSS) method and tests how well it works by comparing it to the current neutrosophic soft set (NSS) model. This model is applied to predict the yield values of Indonesian bonds based on daily data, identifying three important attribute fluctuations in Closing Yield, Opening Yield, and daily amplitude as predictor variables. The results show that the P-NSS model is able to produce predictions with low error and consistent error distribution, demonstrating superiority in prediction accuracy compared to the NSS model.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Plithogenic Soft Set, Forecasting, Neutrosophic, Fuzzy Logic, Yield, Plithogenic Soft Set, Peramalan, Neutrosophic, Logika Fuzzy, Yield.
Subjects: Q Science > QA Mathematics > QA159 Algebra
Q Science > QA Mathematics > QA276 Mathematical statistics. Time-series analysis. Failure time data analysis. Survival analysis (Biometry)
Q Science > QA Mathematics > QA39.3 Fuzzy mathematics
Q Science > QA Mathematics > QA9.58 Algorithms
Q Science > QA Mathematics > QA9.64 Fuzzy logic
Q Science > QA Mathematics > QA248_Fuzzy Sets
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44101-(S2) Master Thesis
Depositing User: Qonita Qurratu Aini
Date Deposited: 07 Aug 2024 21:45
Last Modified: 07 Aug 2024 21:45
URI: http://repository.its.ac.id/id/eprint/113638

Actions (login required)

View Item View Item