Analisis dan Kontrol Optimal Model Penyebaran Malware pada Jaringan Internet of Things

Kristi, Yohanna (2024) Analisis dan Kontrol Optimal Model Penyebaran Malware pada Jaringan Internet of Things. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5002201100-Undergraduate_Thesis.pdf] Text
5002201100-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (2MB) | Request a copy

Abstract

Perkembangan teknologi telah melahirkan berbagai inovasi baru, salah satunya ialah Internet of Things (IoT). Dengan kemampuan memperluas manfaat konektivitas internet ke berbagai perangkat, IoT banyak digunakan dan telah memberikan manfaat besar di berbagai sektor. Namun, penggunaan IoT dapat menghadirkan tantangan serius, salah satunya ialah ancaman keamanan dari serangan malware. Dampak dari serangan malware dapat sangat signifikan, dengan kerugian yang bisa mencapai jutaan dolar. Oleh karena itu, untuk memahami penyebaran malware dalam jaringan IoT, Tugas Akhir ini merekonstruksi dan menganalisis model penyebaran malware yang didasarkan pada model epidemiologi. Terdapat dua titik kesetimbangan pada model yang digunakan, yaitu titik kesetimbangan bebas malware dan titik kesetimbangan adanya malware. Dari analisis kestabilan diperoleh bahwa sistem stabil di sekitar titik kesetimbangan adanya malware dan tidak stabil di sekitar titik kesetimbangan bebas malware. Strategi kontrol optimal berupa pemasangan antivirus dan instalasi ulang diusulkan untuk meminimalkan jumlah perangkat yang terjangkit malware (exposed dan infected) serta biaya pengendalian. Analisis eksistensi kontrol optimal kemudian dilakukan dari model yang telah diberikan kontrol tersebut. Selanjutnya, penyelesaian kontrol optimal dilakukan dengan Prinsip Minimum Pontryagin dan secara numerik menggunakan metode Runge Kutta Orde 4. Melalui hasil simulasi diperoleh bahwa strategi kontrol yang diusulkan mampu mengurangi perangkat laten (exposed) dan perangkat terinfeksi (infected).
==================================================================================================================
Technological advancements have led to various new innovations, one of which is the Internet of Things (IoT). By extending the benefits of internet connectivity to various devices, IoT is widely used and has provided significant benefits across different sectors. However, the use of IoT can present serious challenges, one of which is the security threat from malware attacks. The impact of malware attacks can be substantial, with potential losses reaching millions of dollars. Therefore, to understand the spread of malware in IoT networks, this thesis reconstructs and analyzes a malware propagation model based on epidemiological models. The model used has two equilibrium points: the malware-free equilibrium point and the endemic equilibrium point. Stability analysis reveals that the system is stable around the endemic equilibrium point and unstable around the malware-free equilibrium point. An optimal control strategy, including antivirus installation and device reinstallation, is proposed to minimize the number of infected (exposed and infected) devices and control costs. The existence of optimal control is then analyzed from the controlled model. Furthermore, the optimal control solution is derived using Pontryagin's Minimum Principle and numerically solved using the 4th Order Runge Kutta method. Simulation results show that the proposed control strategy effectively reduces the number of exposed and infected devices.

Item Type: Thesis (Other)
Uncontrolled Keywords: Antivirus, Eksistensi Kontrol Optimal, Jaringan Internet of Things, IoT, Model Matematika, Malware, Kontrol Optimal, Prinsip Minimum Pontryagin ====================================================================================================================== nternet of Things, IoT, Malware, Mathematical Model, Optimal Control Existence, Network, Optimal Control, Antivirus, Pontryagin’s Minimum Principle
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Yohanna Kristi
Date Deposited: 06 Aug 2024 08:21
Last Modified: 06 Aug 2024 08:21
URI: http://repository.its.ac.id/id/eprint/113718

Actions (login required)

View Item View Item