Studi Eksperimental Pengaruh Variasi Material Filler Komposit pada PCM dan Arus Discharge terhadap Laju Perpindahan Panas pada Permukaan Baterai Li-Ion 18650

Prabowo, Agum Ruly (2024) Studi Eksperimental Pengaruh Variasi Material Filler Komposit pada PCM dan Arus Discharge terhadap Laju Perpindahan Panas pada Permukaan Baterai Li-Ion 18650. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02111940000183-Undergradueate_Thesis.pdf] Text
02111940000183-Undergradueate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (3MB) | Request a copy

Abstract

Kenaikan temperatur pada baterai Lithium-Ion dapat memicu ledakan, sehingga diperlukan sistem manajemen termal (BTMS) untuk mengatasi masalah ini. BTMS terdiri dari dua jenis, yaitu internal dan eksternal. Manajemen internal dilakukan dengan memodifikasi desain elektroda untuk mengurangi risiko
overheating selama reaksi elektrokimia. Manajemen eksternal dibagi menjadi empat metode: pendinginan udara, pendinginan cair, pendinginan pipa panas, dan pendinginan berbasis material perubahan fase (PCM). Sistem pendinginan berbasis
PCM lebih unggul dibandingkan sistem konvensional seperti liquid cooling atau force Convection dengan udara. Manajemen termal berbasis PCM komposit meningkatkan kinerja BTMS dibandingkan dengan baterai murni atau PCM saja. Salah satu teknik untuk meningkatkan transfer panas adalah menambahkan filler dengan konduktivitas termal tinggi pada PCM untuk membentuk komposit PCM. Penggunaan filler dengan rasio 7.3 pada PCM komposit terbukti meningkatkan waktu kerja baterai, seperti ditunjukkan dalam eksperimen. Hasilnya, aluminium
dan grafit menunjukkan performa terbaik dengan waktu kerja terpanjang dan temperatur maksimal terendah, baik pada discharge rate 0.5C maupun 1C. Pada discharge rate 0.5C, aluminium dan grafit meningkatkan waktu kerja masing
masing sebesar 26.57% dan 27.95% serta temperatur maksimal 34.5°C dan 34.6°C dibandingkan dengan waktu kerja dan temperatur discharge rate 0.5C natural konveksi yang mencapai 41°C. Pada discharge rate 1C, mereka menunjukkan
peningkatan waktu kerja sebesar 64.8% dan 72.22% serta temperatur maksimal 34.6°C dan 35.2°C dibandingkan dengan waktu kerja dan temperatur discharge rate 1C natural konveksi yang mencapai 43.6°C. Modul dengan perpindahan panas lebih baik cenderung memiliki waktu kerja lebih lama dan temperatur maksimal lebih rendah, sehingga meningkatkan kapasitas pendinginan baterai. Hasil eksperimen menunjukkan modul aluminium dan grafit memiliki performa terbaik dalam hal waktu kerja, temperatur maksimal, dan perpindahan panas
=====================================================================================================================================
An increase in temperature in Lithium-Ion batteries can trigger explosions, necessitating a thermal management system (BTMS) to address this issue. BTMS consists of two types: internal and external. Internal management involves
modifying electrode designs to reduce the risk of overheating during electrochemical reactions. External management is divided into four methods: air cooling, liquid cooling, heat pipe cooling, and phase change material (PCM)
cooling. PCM-based cooling systems are superior to conventional systems such as liquid cooling or forced convection with air. PCM composite-based thermal management improves BTMS performance compared to pure batteries or PCM
alone. One technique to enhance heat transfer is by adding fillers with high Thermal conductivity to the PCM to form a PCM composite. The use of fillers with a ratio of 7.3 in the PCM composite has been shown to extend battery runtime, as
demonstrated in experiments. Results show that aluminum and graphite exhibit the best performance with the longest runtime and lowest maximum temperatures at both 0.5C and 1C discharge rates. At a 0.5C discharge rate, aluminum and graphite increased runtime by 26.57% and 27.95%, respectively, with maximum temperatures of 34.5°C and 34.6°C, compared to natural convection at 41°C. At a 1C discharge rate, they increased runtime by 64.8% and 72.22%, with maximum temperatures of 34.6°C and 35.2°C, compared to natural convection at 43.6°C. Modules with better heat transfer tend to have longer runtimes and lower maximum
temperatures, thus improving battery cooling capacity. Experimental results show that aluminum and graphite modules have the best performance in terms of runtime, maximum temperature, and heat transfer.

Item Type: Thesis (Other)
Uncontrolled Keywords: BTMS, Battery, PCM composite, Discharg, BTMS, Baterai, PCM Komposit, Pengosongan
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TJ Mechanical engineering and machinery > TJ263 Heat exchangers
T Technology > TJ Mechanical engineering and machinery > TJ265.E23 Thermodynamics.
T Technology > TJ Mechanical engineering and machinery > TJ808 Renewable energy sources. Energy harvesting.
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Agum Ruly Prabowo
Date Deposited: 13 Aug 2024 03:53
Last Modified: 13 Aug 2024 03:53
URI: http://repository.its.ac.id/id/eprint/113789

Actions (login required)

View Item View Item