Pengujian Eksperimental dan Pemodelan Elemen Hingga Fatik Siklus Rendah Mortar Serat Polipropilen

Sukmajaya, Pannadipa Putera (2024) Pengujian Eksperimental dan Pemodelan Elemen Hingga Fatik Siklus Rendah Mortar Serat Polipropilen. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6012221051-Master_Thesis.pdf] Text
6012221051-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (5MB) | Request a copy

Abstract

Kebutuhan akan beton yang mampu bertahan dan memiliki durabilitas yang tinggi sangat dibutuhkan. Fatigue merupakan sebuah problema yang sering terjadi akibat beban berulang yang dapat menyebabkan kegagalan pada sebuah struktur. Fatigue disebabkan oleh rendahnya kuat tarik dari beton yang menyebabkan rendahnya ketahanan beton terhadap inisiasi retak beton dan pertumbuhan retak akibat beban tarik.
Penambahan fiber polipropilen pada beton menunjukan peningkatan siklus fatigue dari beton. Penelitian ini dilakukan dengan meninjau perilaku mortar dengan variasi presentase volume fraksi fiber polipropilen Mapei monofilamen dengan panjang 12 mm serta variasi ukuran pasir silika terhadap low cycle fatigue dengan sistem pengujian siklik monotonik melalui pengujian eksperimental di laboratorium. Penelitian ini menyajikan mechanical properties dari mortar fiber polipropilen terhadap kuat tekan, lentur serta pemodelan lentur menggunakan aplikasi 3D-NLFEA.
Dari hasil pengujian mechanical properties didapatkan kesimpulan bahwa seiring penambahan fiber akan menurunkan nilai kuat tekan namun akan meningkatkan nilai dari kuat lentur. Hasil optimum pada campuran dengan menggunakan volume fraksi fiber sebesar 2% dan pasir silika ukuran 200 dengan kuat tekan rata-rata sebesar 47,091 MPa dan tegangan lentur sebesar 6,05 MPa. Pada hasil uji fatigue didapatkan hasil bahwa dengan campuran optimum mampu menghasilkan nilai disipasi energi sebesar 97,7%. Pemodelan lentur dengan menggunakan 3D-NLFEA dengan pendekatan stress-strain mampu mesimulasikan hasil pengujian lentur dengan baik sehingga stress-strain hasil pemodelan dapat digunakan untuk mesimulasikan struktur yang lebih besar.
===================================================================================================
The demand for concrete with superior durability and resilience is essential. Fatigue is a common problem that occurs due to repetitive loads, which can lead to failure in structure. Fatigue is caused by the low tensile strength of concrete, resulting in decreased concrete resistance to the initiation of cracks and the growth of cracks due to tensile stress.
The addition of polypropylene fiber to concrete shows an increase in the fatigue cycle of concrete. This study was conducted by reviewing the behavior of mortar with variations in the percentage of volume fraction of 12 mm long Mapei monofilament polypropylene fiber and variations in the size of silica sand against low cycle fatigue using a monotonic cyclic testing system through experimental testing in the laboratory. This research presents the mechanical properties of polypropylene fiber mortar in terms of compressive strength, flexural strength, and flexural modeling using the 3D-NLFEA application.
From the results of the mechanical properties testing, it was concluded that the addition of fiber decreases the compressive strength but increases the flexural strength. The optimum results were found in the mixture using a 2% volume fraction of fiber and 200-sized silica sand, with an average compressive strength of 47.091 MPa and a flexural strength of 6.05 MPa. The fatigue test results showed that the optimum mixture could achieve an energy dissipation value of 97.7%. The flexural modeling using 3D-NLFEA with a stress-strain approach was able to simulate the flexural test results well, so the stress-strain results from the modeling can be used to simulate larger structures.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Fatigue, Fiber Reinforced Mortar, Polypropylene Fiber, 3D-NLFEA, Fatigue, Mortar Fiber, Fiber Polipropilen, 3D-NLFEA
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA347 Finite Element Method
T Technology > TA Engineering (General). Civil engineering (General) > TA418.16 Materials--Testing.
T Technology > TA Engineering (General). Civil engineering (General) > TA418.38 Materials--Fatigue.
T Technology > TA Engineering (General). Civil engineering (General) > TA440 Concrete--Cracking.
T Technology > TA Engineering (General). Civil engineering (General) > TA444 Reinforced concrete
Divisions: Faculty of Civil Engineering and Planning > Civil Engineering > 22101-(S2) Master Thesis
Depositing User: Pannadipa Putera Sukmajaya
Date Deposited: 08 Aug 2024 07:59
Last Modified: 08 Aug 2024 07:59
URI: http://repository.its.ac.id/id/eprint/113869

Actions (login required)

View Item View Item