Pengaruh Penambahan Besi(III) terhadap Kerapatan Daya yang Dihasilkan oleh Sistem Double-Chamber Microbial Fuel Cell Menggunakan Uncultured Pseudomonas sp. Clone 034571 018 dari Lahar Gunung Semeru

Hanwinsha, Avintha Devany (2024) Pengaruh Penambahan Besi(III) terhadap Kerapatan Daya yang Dihasilkan oleh Sistem Double-Chamber Microbial Fuel Cell Menggunakan Uncultured Pseudomonas sp. Clone 034571 018 dari Lahar Gunung Semeru. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5004201092-Undergraduate-Thesis.pdf] Text
5004201092-Undergraduate-Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (3MB) | Request a copy

Abstract

Penggunaan energi di Indonesia masih didominasi oleh minyak bumi dan batu bara yang merupakan sumber energi yang tidak dapat diperbaharui. Ketergantungan terhadap penggunaan sumber bahan bakar ini dapat menyebabkan pemanasan global dan perubahan iklim akibat dari emisi karbon yang dihasilkan. Energi alternatif telah menjadi isu pada Sustainable Development Goals (SDG’s) pada tujuan no 7 tentang energi bersih dan terjangkau. Teknologi sel bahan bakar mikroba muncul sebagai hasil dari upaya terbaru dalam pengembangan sumber energi alternatif menggunakan bantuan mikroorganisme. Sistem Microbial Fuel Cell (MFC) dianggap mampu mengolah air limbah, menghilangkan polutan, mengekstraksi hidrogen, pemulihan logam berat, dan aplikasi sensor. Besi(III) merupakan salah satu limbah B3 di lingkungan, penambahan ion logam Besi(III) sebagai akseptor elektron pada katoda didasarkan pada potensial redoksnya yang tinggi, yang memfasilitasi reaksi elektrokimia dan meningkatkan kinerja sistem MFC, sekaligus memfasilitasi bioreduksi Besi(III) menjadi Besi(II). Penelitian ini bertujuan untuk mengetahui pengaruh variasi konsentrasi Besi(III) terhadap nilai densitas daya yang dihasilkan sistem Double-Chamber Microbial Fuel Cell (DCMFC) menggunakan isolat bakteri Uncultured Pseudomonas sp. Clone 034571 018 (LS-ISP2-JN1). DCMFC beroperasi dengan menempatkan kultur cair dari isolat bakteri di kompartemen anoda, kemudian larutan Besi(III) yang bervariasi (0, 5, dan 10 ppm) dan larutan elektrolit Phospate Buffer Saline (PBS) di kompartemen katoda. Sistem DCMFC lebih optimal karena pemisahan anoda dan katoda oleh membran penukar proton, yang memfasilitasi transfer eksternal elektron dari anoda ke katoda. Kerapatan daya terbesar dihasilkan oleh sistem DCMFC dengan penambahan konsentrasi Besi(III) 10 ppm yaitu sebesar 0,2265 mW/m2 pada hari ke-7, sedangkan dengan penambahan konsentrasi Besi(III) 5 ppm yaitu sebesar 0,1024 mW/m2 pada hari ke-8. Kerapatan daya terkecil dihasilkan oleh sistem DCMFC tanpa penambahan Besi(III) yaitu sebesar 0,0717 mW/m2 pada hari ke-8. Semakin besar konsentrasi Besi(III), maka semakin besar nilai kerapatan daya yang dihasilkan oleh sistem DCMFC. Penambahan Besi(III) pada sistem DCMFC menghasilkan kerapatan daya dalam jangka waktu lebih panjang daripada tanpa penambahan Besi(III). Selain itu, hasil kerapatan daya juga dapat dibandingkan dengan proses reduksi bakteri terhadap Besi(III). Kemampuan bakteri dalam mereduksi Besi(III) dengan konsentrasi 2 ppm hingga 6 ppm meningkat secara eksponensial hingga pada konsentrasi Besi(III) 8 ppm dan 10 ppm kemampuannya berkurang, namun belum diketahui seberapa kemampuan bakteri mencapai maksimal.
==============================================================================================================================
Energy in Indonesia is still dominated by petroleum and coal which are non-renewable energy sources. Dependence on the use of these fuel sources can cause global warming and climate change due to the carbon emissions produced. Alternative energy has become an issue in the Sustainable Development Goals (SDG's) in goal no. 7 on clean and affordable energy. Microbial fuel cell technology emerged as a result of the latest efforts in the development of alternative energy sources using the help of microorganisms. The Microbial Fuel Cell (MFC) system is considered capable of processing wastewater, removing pollutants, extracting hydrogen, recovering heavy metals, and sensor applications. Iron (III) is one of the B3 wastes in the environment, the addition of Iron (III) metal ions as electron acceptors at the cathode is based on its high redox potential, which facilitates electrochemical reactions and improves the performance of the MFC system, while facilitating the bioreduction of Iron (III) to Iron (II). This study aims to determine the effect of variations in Iron(III) concentration on the power density value produced by the Double-Chamber Microbial Fuel Cell (DCMFC) system using Uncultured Pseudomonas sp. Clone 034571 018 (LS-ISP2-JN1) bacterial isolates. DCMFC operates by placing a liquid culture of the bacterial isolate in the anode compartment, then varying Iron(III) solutions (0, 5, 10) ppm and Phosphate Buffer Saline (PBS) electrolyte solution in the cathode compartment. The DCMFC system is more optimal because the anode and cathode are separated by a proton exchange membrane that facilitates the external transfer of electrons from the anode to the cathode. The highest power density is produced by the DCMFC system with the addition of 10 ppm Iron(III) concentration, which is 0.2265 mW/m2 on the 7th day, while with the addition of 5 ppm Iron(III) concentration, it is 0.1024 mW/m2 on the 8th day. The smallest power density was produced by the DCMFC system without the addition of 10 ppm Iron(III) concentration, which was 0.0717 mW/m2 on the 8th day. The greater the concentration of Iron(III), the greater the power density value produced by the DCMFC system. The addition of Iron(III) to the DCMFC system produced a power density in a longer period of time than without the addition of Iron(III). In addition, the results of the power density can be compared with the bacterial reduction process of Iron(III). The ability of bacteria to reduce Iron(III) with a concentration of 2 ppm to 6 ppm increased exponentially until at an Iron(III) concentration of 8 ppm and 10 ppm the ability decreased, but it is not yet known how much the bacteria's ability reaches its maximum.

Item Type: Thesis (Other)
Uncontrolled Keywords: Besi(III), Bakteri LS-ISP2-JN1, DCMFC, Kerapatan Daya Iron(III), Bacteria LS-ISP2-JNI, Power Density
Subjects: Q Science > QD Chemistry > QD1 Oxidation-reduction reaction.
Q Science > QR Microbiology > QR74.8 Bacteria
T Technology > TD Environmental technology. Sanitary engineering > TD192.5 Bioremediation
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Chemistry > 47201-(S1) Undergraduate Thesis
Depositing User: Avintha Devany Hanwinsha
Date Deposited: 26 Aug 2024 03:56
Last Modified: 26 Aug 2024 04:09
URI: http://repository.its.ac.id/id/eprint/113953

Actions (login required)

View Item View Item