Analisis Dampak Polusi Udara terhadap Banyaknya Penderita ISPA di DKI Jakarta menggunakan HDBSCAN

Septriana, Naila Sakina (2024) Analisis Dampak Polusi Udara terhadap Banyaknya Penderita ISPA di DKI Jakarta menggunakan HDBSCAN. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5002201101-TUGAS AKHIR.pdf] Text
5002201101-TUGAS AKHIR.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (2MB) | Request a copy

Abstract

Dampak polusi udara di Jakarta kian menjadi hal yang harus diperhatikan. Banyak masyarakat yang masih mengabaikan hal tersebut, mereka tidak menyadari bahayanya bagi kesehatan. Penderita ISPA di Jakarta kian bertambah dan ISPA banyak menyerang masyarakat dengan kondisi yang rentan. DBSCAN merupakan algoritma clustering yang dapat melakukan pengelompokkan data spasial. Penelitian ini menggunakan HDBSCAN untuk mempelajari pola spasial Indeks Standar Pencemar Udara (ISPU) di Jakarta. Data spasial (koordinat GPS) dan data lain dari Indeks Standar Pencemar Udara (ISPU) dikumpulkan dan diolah menggunakan algoritma HDBSCAN. Penelitian Tugas Akhir ini bertujuan untuk menganalisis dan mengevaluasi penggunaan algoritma cluster HDBSCAN dan mengetahui kaitan polusi udara dengan banyaknya jumlah penderita ISPA di DKI Jakarta. Pada akhirnya akan menghasilkan visualisasi boxplot dan diagram scatter plot untuk menunjukkan cluster-cluster Indeks Standar Pencemar Udara (ISPU) yang terkonsentrasi di daerah padat penduduk dan berpolusi tinggi. Diharapkan penelitian ini menghasilkan hasil yang akurat untuk clustering komponen udara ISPU di Jakarta. Hasil dari clustering berdasarkan diagnosa penderita ISPA menggunakan beberapa nilai minimum cluster dan minimum samples, menghasilkan nilai terbaik dengan nilai minimum cluster size 4 dan minimum samples 80, menghasilkan 5 cluster serta nilai Silhouette Coefficient 0.7539198283773361 dan nilai Davies-Bouldin 0.3997668959276568 untuk tahun 2023 dan tahun 2021 menghasilkan nilai Silhouette 0.6793198489073511 dan nilai Davies-Bouldin 0.8119878959279893.
===================================================================================================================================================================================================================
The impact of air pollution in Jakarta is becoming an issue that must be addressed. Many people still ignore this matter and do not realize the health hazards it poses. The number of people suffering from Acute Respiratory Infections (ARI) in Jakarta continues to increase, and ARI predominantly affects vulnerable populations. DBSCAN is a clustering algorithm that can perform spatial data clustering. This study uses HDBSCAN to analyze the spatial patterns of the Air Pollution Standard Index (ISPU) in Jakarta. Spatial data (GPS coordinates) and other data from the Air Pollution Standard Index (ISPU) are collected and processed using the HDBSCAN algorithm. This final project aims to analyze and evaluate the use of the HDBSCAN clustering algorithm and to understand the relationship between air pollution and the increasing number of ARI sufferers in Jakarta. Ultimately, this study will produce boxplot and scatter plot visualizations to show the clusters of the Air Pollution Standard Index (ISPU) concentrated in densely populated and highly polluted areas. It is hoped that this research will yield accurate results for clustering ISPU air components in Jakarta. The clustering results based on ARI diagnoses using several minimum cluster and minimum samples values produced the best results with a minimum cluster size of 4 and minimum samples of 80, resulting in 5 clusters and a Silhouette Coefficient value of 0.7539198283773361 and a Davies-Bouldin Index value 0.3997668959276568.

Item Type: Thesis (Other)
Uncontrolled Keywords: Polusi Udara, ISPA, Clustering, Spasial, Scatter Plot, Air Pollution, ARI, Clustering, Spatial, Scatter Plot
Subjects: Q Science > QA Mathematics > QA278 Cluster Analysis. Multivariate analysis. Correspondence analysis (Statistics)
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis
Depositing User: Naila Sakina Septriana
Date Deposited: 07 Aug 2024 17:52
Last Modified: 07 Aug 2024 17:52
URI: http://repository.its.ac.id/id/eprint/114596

Actions (login required)

View Item View Item