Analisis Faktor-faktor yang Diduga Berpengaruh Terhadap Kasus Balita Stunting di Jawa Timur Menggunakan Regresi Logistik Biner

Utami, Amanda (2024) Analisis Faktor-faktor yang Diduga Berpengaruh Terhadap Kasus Balita Stunting di Jawa Timur Menggunakan Regresi Logistik Biner. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5003201026_Undergraduate_Thesis.pdf] Text
5003201026_Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (3MB) | Request a copy

Abstract

Stunting adalah kondisi di mana pertumbuhan balita tidak optimal akibat kekurangan gizi sejak dalam kandungan. Stunting dapat memiliki konsekuensi negatif jangka panjang terhadap kesehatan, pendidikan, dan produktivitas ekonomi balita. Tujuan dari penelitian ini adalah mendeskripsikan karakteristik balita stunting di Jawa Timur,mengidentifikasi faktor-faktor yang berpengaruh terhadap kasus stunting di Provinsi Jawa Timur serta memodelkan hubungan antara kasus stunting dan faktor-faktor yang diduga mempengaruhi stunting di Provinsi Jawa Timur. Penelitian ini menggunakan regresi
logistik biner dengan pendekatan Synthetic Minority Oversampling Technique (SMOTE) digunakan untuk menganalisis karakteristik Kasus Balita Stunting. Data yang digunakan berasal dari Survei Status Gizi Indonesia (SSGI) Tahun 2022,
dengan balita normal persentase sebanyak 87% atau 8.354 balita sedangkan balita stunting memiliki persentase sebesar 13% atau 1.259 balita. Dengan Variabel prediktor adalah jenis kelamin, Pemberian ASI eksklusif, Imunisasi Dasar Lengkap, Imunisasi dasar lengkap, Pemberian Obat Cacing, Berat Badan Bayi Lahir, Tinggi Badan Bayi Lahir, Ibu Hamil Mendapatkan PMT (Pemberian Makanan Tambahan), Ibu Hamil Mendapatkan TTD (Tablet Tambah Darah). Hasil Penelitian ini menunjukkan bahwa seluruh variabel prediktor merupakan faktor-faktor yang mempengaruhi stunting. Model regresi Logistik yang terbaik dari status balita stunting di Provinsi Jawa timur Tahun 2022 memiliki ketepatan klasifikasi setelah dilakukan penanganan data imbalanced sebesar 66,7%.
==========================================================================
Stunting is a condition where a child's growth is not optimal due to malnutrition in the womb. Stunting can have long-term negative consequences for children's health, education and economic productivity. The aim of this research is to describe the characteristics of stunting toddlers in East Java, identify factors that influence stunting cases in East Java Province and model the relationship between stunting cases and factors that are thought to influence stunting in East Java Province. This research uses binary logistic regression with the Synthetic Minority Oversampling Technique (SMOTE) approach to analyze the characteristics of Stunting Toddler Cases. The data used comes from the 2022 Indonesian Nutrition Status Survey (SSGI), with the percentage of normal toddlers being 87% or 8,354 toddlers, while the percentage of stunted toddlers is 13% or 1,259 toddlers. The predictor variables are gender, exclusive breastfeeding, complete basic immunization, complete basic immunization, deworming, birth weight, birth height, pregnant women receiving PMT (additional feeding), pregnant women receiving TTD (additional tablets). Blood). The results of this research show that all predictor variables are factors that influence stunting. The best logistic regression model of stunted toddler status in East Java Province in 2022 has classification accuracy after handling imbalanced data of 66.7%.

Item Type: Thesis (Other)
Uncontrolled Keywords: Toddlers, Binary Logistic Regression, SMOTE, Stunting Balita, Regresi Logistik Biner, SMOTE, Stunting
Subjects: R Medicine > R Medicine (General)
R Medicine > RJ Pediatrics
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis
Depositing User: Amanda Utami
Date Deposited: 09 Aug 2024 02:25
Last Modified: 09 Aug 2024 02:25
URI: http://repository.its.ac.id/id/eprint/114615

Actions (login required)

View Item View Item