Jatikusuma, Andhika (2024) Pemodelan Faktor-Faktor yang Memengaruhi Jumlah Kasus Diabetes Melitus di Provinsi Jawa Timur Tahun 2022 Menggunakan Geographically Weighted Negative Binomial Regression. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
5003201090-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2026. Download (3MB) | Request a copy |
Abstract
Diabetes melitus (DM) adalah kondisi medis yang ditandai oleh tingginya kadar glukosa darah akibat gangguan produksi atau penggunaan insulin dan dapat merusak organ dan jaringan penting tubuh. Provinsi Jawa Timur menjadi salah satu wilayah dengan jumlah kasus DM tertinggi di Indonesia pada tahun 2022. Dalam penelitian ini, data jumlah kasus DM menunjukkan overdispersion yang diatasi dengan metode Geographically Weighted Negative Binomial Regression (GWNBR). Tujuan penelitian ini adalah untuk mengetahui karakteristik data jumlah kasus DM di Jawa Timur serta faktor-faktor yang mempengaruhinya, dan untuk memodelkan jumlah kasus DM menggunakan metode GWNBR. Penelitian ini menggunakan pembobot fungsi kernel adaptive bisquare dan adaptive tricube. Pemodelan GWNBR dilakukan dengan exposure dan tanpa exposure, di mana jumlah penduduk digunakan sebagai variabel exposure. Hasil penelitian menunjukkan bahwa jumlah kasus DM terbanyak ditemukan di Kota Surabaya dengan 96.732 kasus, sementara jumlah kasus terendah terdapat di Kota Batu dengan 2.611 kasus. Berdasarkan kriteria kebaikan model AICc, model GWNBR dengan exposure adalah model terbaik dengan menggunakan kernel adaptive bisquare dengan nilai AICc 23.012,62 dan menghasilkan dua kelompok kabupaten/kota berdasarkan variabel yang berpengaruh signifikan, variabel yang signifikan di seluruh lokasi yaitu persentase penduduk tingkat pendidikan SMA ke-atas, rata-rata pengeluaran makanan dan minuman jadi perkapita dalam sebulan, dan rata-rata pengeluaran makanan berserat perkapita dalam sebulan, sedangkan variabel yang berpengaruh di sebagian besar lokasi adalah persentase penduduk usia lanjut.
=============================================================
Diabetes mellitus (DM) is a medical condition characterized by high blood glucose levels due to impaired production or use of insulin, which can damage vital organs and tissues. East Java Province was one of the regions with the highest number of DM cases in Indonesia in 2022. In this study, the data on the number of DM cases showed overdispersion, which was addressed using the Geographically Weighted Negative Binomial Regression (GWNBR) method. The objectives of this research were to understand the characteristics of DM case data in East Java, identify the influencing factors, and model the number of DM cases using the GWNBR method. This study employed adaptive bisquare and adaptive tricube kernel weighting functions. GWNBR modeling was performed with and without exposure, using the population as the exposure variable. The results showed that the highest number of DM cases was found in Surabaya City with 96,732 cases, while the lowest number was in Batu City with 2,611 cases. Based on the model goodness-of-fit criterion AICc, the best model was the GWNBR with exposure using the adaptive bisquare kernel, with an AICc value of 23,012.62. This model produced two groups of regencies/cities based on the significantly influencing variables. The variables that were significant across all locations were the percentage of the population with at least a high school education, the average monthly per capita expenditure on ready-made food and beverages, and the average monthly per capita expenditure on fiber-rich foods. The variable that significantly influenced most locations was the percentage of the elderly population.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Diabetes Melitus, Exposure, Geographically Weighted Negative Binomial Regression, Jawa Timur, Diabetes Mellitus, East Java, Exposure, Geographically Weighted Negative Binomial Regression |
Subjects: | H Social Sciences > HA Statistics > HA29 Theory and method of social science statistics H Social Sciences > HA Statistics > HA30.6 Spatial analysis H Social Sciences > HA Statistics > HA31.3 Regression. Correlation H Social Sciences > HA Statistics > HA31.7 Estimation |
Divisions: | Faculty of Mathematics and Science > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Andhika Jatikusuma |
Date Deposited: | 08 Aug 2024 07:20 |
Last Modified: | 08 Aug 2024 07:20 |
URI: | http://repository.its.ac.id/id/eprint/114646 |
Actions (login required)
View Item |