Studi Perbandingan Konfigurasi Horizontal Flywheel dan Vertical Flywheel Penyeimbang Control Moment Gyroscope (CMG) pada Kendaraan Roda Dua

Wisnumurti, Nugroho (2024) Studi Perbandingan Konfigurasi Horizontal Flywheel dan Vertical Flywheel Penyeimbang Control Moment Gyroscope (CMG) pada Kendaraan Roda Dua. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007201216_Undergraduate_Thesis.pdf] Text
5007201216_Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (2MB) | Request a copy

Abstract

Control Moment Gyroscope (CMG) digunakan sebagai penstabil atau penyeimbang kendaraan karena kemampuannya menghasilkan torsi sebanding dengan laju perubahan momentum sudutnya. Properti ini memungkinkan penggunaan efektif CMG dalam aplikasi yang memerlukan torsi penstabil untuk melawan gaya eksternal atau torsi yang dapat menyebabkan kendaraan terbalik atau kehilangan keseimbangan. CMG dianggap lebih baik daripada roda reaksi atau roda bandul karena efisiensi daya, fleksibilitas, kemampuan menstabilkan dalam beberapa sumbu, menghindari singularitas, pemanfaatan presepsi giroskopik, dan efek giroskopik roda momen kontrol. Keunggulan ini membuat CMG sangat cocok untuk aplikasi yang memerlukan presisi tinggi dan kontrol, seperti perangkat kedirgantaraan, wahana antariksa, dan jenis kendaraan tertentu. Penelitian tentang CMG sudah banyak dilakukan dengan berbagai konfigurasi gimbal namun penelitian tentang konfigurasi gimbal masih tidak terlalu banyak. Penelitian ini bertujuan untuk membandingkan respon dinamis dari self-balancing controlled moment gyroscope (CMG) dengan dua konfigurasi gimbal: horizontal dan vertikal. Parameter utama yang dianalisis meliputi overshoot, settling time, rise time, peak value, dan sudut kemiringan maksimal. Rise time model horizontal lebih cepat 0,007 detik dibandingkan gimbal vertikal. Settling time gimbal horizontal lebih cepat 0,0032 detik dibandingkan gimbal vertikal, dan nilai overshoot gimbal horizontal lebih kecil 0,11% dibandingkan gimbal vertikal. Nilai puncak gimbal horizontal lebih kecil 0,01 dibandingkan gimbal vertikal. Dari data yang diperoleh, rumus RMS dengan sudut referensi 0 derajat menunjukkan nilai RMS untuk gimbal horizontal sebesar 2,0933 dan gimbal vertikal sebesar 2,0933. Hasil ini menunjukkan bahwa performa kedua konfigurasi gimbal tidak jauh berbeda.
==============================================================================================================================
The Control Moment Gyroscope (CMG) is used as a stabilizer or balancer for vehicles due to its ability to generate torque proportional to the rate of change of its angular momentum. This property allows for the effective use of CMGs in applications requiring stabilizing torque to counteract external forces or torques that may cause the vehicle to tip over or lose balance. CMGs are considered superior to reaction wheels or flywheels because of their power efficiency, flexibility, ability to stabilize along multiple axes, avoidance of singularities, utilization of gyroscopic perception, and the gyroscopic effect of control moment wheels. These advantages make CMGs highly suitable for applications requiring high precision and control, such as aerospace devices, spacecraft, and certain types of vehicles (Silva et al., 2019). Numerous studies have been conducted on CMGs with various gimbal configurations. This study aims to compare the dynamic response of a self-balancing controlled moment gyroscope (CMG) with two gimbal configurations: horizontal and vertical. The main parameters analyzed include overshoot, settling time, rise time, peak value, and maximum tilt angle. Tests were conducted by monitoring the system response for both gimbal configurations to determine optimal performance. The rise time of the horizontal model is 0.007 seconds faster than the vertical gimbal. The settling time of the horizontal gimbal is 0.0032 seconds faster than the vertical gimbal, and the overshoot value of the horizontal gimbal is 0.11% smaller than the vertical gimbal. The peak value of the horizontal gimbal is 0.01 smaller than the vertical gimbal. From the data obtained, the RMS formula with a reference angle of 0 degrees shows an RMS value for the horizontal gimbal of 2.0933 and for the vertical gimbal of 2.0933. These results indicate that the performance of both gimbal configurations is not significantly different.

Item Type: Thesis (Other)
Uncontrolled Keywords: CMG, Flywheel, PID, Simscape Multibody, Self-balancing
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ213 Automatic control.
T Technology > TJ Mechanical engineering and machinery > TJ223 PID controllers
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Nugroho Wisnumurti
Date Deposited: 21 Aug 2024 03:10
Last Modified: 21 Aug 2024 03:10
URI: http://repository.its.ac.id/id/eprint/114853

Actions (login required)

View Item View Item