Analisis Sifat Elektronik dan Termoelektrik Material Janus Berbasis Molibdenum

Kurniawati, Luluk (2024) Analisis Sifat Elektronik dan Termoelektrik Material Janus Berbasis Molibdenum. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6001221017-Master_Thesis.pdf] Text
6001221017-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (6MB) | Request a copy

Abstract

Termoelektrik adalah mekanisme transformasi energi yang memanfaatkanperubahan langsung dari energi panas ke energi listrik. Dengan melimpahnyapotensi energi panas yang tersedia, salah satu penelitian yang gencar dilakukanadalah pada pengembangan material termoelektrik yang dapat memaksimalkanefisiensi konversi. Standar dalam evaluasi kualitas material untuk aplikasitermoelektrik adalah Power Factor dan Figure-of-Merit (ZT), yang dipengaruhi olehvariabel penting seperti koefisien seebeck, konduktivitas listrik, dan konduktivitastermal. Oleh karena itu diperlukan material yang memiliki Power Factor danFigure of merit yang tinggi. Material janus memiliki luas permukaan spesifik yangbesar dan mampu meningkatkan pergerakan elektron dan lubang yang dihasilkanoleh panas menuju antarmuka reaksi salah satu material dikalkogenida logamtransisi dua dimensi (2D) adalah yang berbasis molybdenum pada penelitianini menggunakan material MoSSe, MoSTe, MoSeTe, MoSeO, MoTeO, MoSO.Penelitian ini dilakukan menggunakan pendekatan komputasi dengan menggunakanmetode Density Functional Theory (DFT) yang menyelesaikan persamaan Kohn-Sham dan Boltzmann transport theory, yang diterapkan melalui platform perangkatlunak terkemuka seperti QUANTUM ESPRESSO dan BoltzTraP2. Hasilpenelitian menunjukkan bahwa senyawa-senyawa ini memiliki stabilitas strukturyang stabil. Selain itu, sifat elektronik menunjukan celah pita langsung selebar1, 58 eV untuk MoSSe, 1, 04 eV untuk MoSTe, dan 1, 3 eV untuk MoSeTe, dancelah pita tidak langsung sebesar 0, 23 eV untuk MoTeO, 0, 8 eV untuk MoSeO, dan1, 12 eV untuk MoSO. Properti termoelektrik dari material molibdenum tertinggiterdapat pada MoSSe, dengan faktor daya sebesar 0, 003 W/mK2 untuk tipe-p dan0, 0031 W/mK2 untuk tipe-n
=======================================================================================================================================
Hermoelectric materials are mechanisms that transform energy by directlyconverting heat energy into electrical energy. Given the abundance of potentialthermal energy available, one of the prominent areas of research is the developmentof thermoelectric materials that can maximize conversion efficiency. The standardmetrics for evaluating the quality of materials for thermoelectric applications arethe Power Factor and Figure-of-Merit (ZT), which are influenced by key variablessuch as the Seebeck coefficient, electrical conductivity, and thermal conductivity.Materials with high Power Factor and Figure-of-Merit are desired.Janus materials possess a large specific surface area and can enhance themovement of electrons and holes generated by heat towards the reaction interface.One class of materials investigated in this study is transition metal dichalcogenides(TMDs) based on molybdenum, specifically MoSSe, MoSTe, MoSeTe, MoSeO,MoTeO, and MoSO. This research employs a computational approach usingDensity Functional Theory (DFT) to solve the Kohn-Sham equations andBoltzmann transport theory, implemented through leading software platforms suchas QUANTUM ESPRESSO and BoltzTraP2.The results indicate that these compounds exhibit stable structural properties.Additionally, the electronic properties show direct bandgaps of 1.58 eV for MoSSe,1.04 eV for MoSTe, and 1.3 eV for MoSeTe. Indirect bandgaps are 0.23 eV forMoTeO, 0.8 eV for MoSeO, and 1.12 eV for MoSO. Among the molybdenum-basedmaterials, MoSSe exhibits the highest thermoelectric properties, with a power factorof 0.003 W/mK² for p-type and 0.0031 W/mK² for n-type.

Item Type: Thesis (Masters)
Uncontrolled Keywords: DFT, Energi, Janus MoXY, Sifat Elektronik, Termoelektrik, DFT, Electronic Properties, Energy, Janus MoXY, Thermoelectric
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK201 Electric Power Transmission
Q Science > Q Science (General) > Q325.5 Machine learning. Support vector machines.
Q Science > QC Physics > QC100 Crystals.
Q Science > QC Physics > QC610.3 Electric conductivity
Q Science > QC Physics > QC 611.97.T46 Temperature effects. Including transition temperature
Q Science > QD Chemistry > QD905.2 Crystals.
T Technology > T Technology (General) > T385 Visualization--Technique
T Technology > T Technology (General) > T57.5 Data Processing
T Technology > T Technology (General) > T57.62 Simulation
T Technology > T Technology (General) > T58.8 Productivity. Efficiency
T Technology > TJ Mechanical engineering and machinery > TJ164 Power plants--Design and construction
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2950 Thermoelectric materials.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK351 Electric measurements.
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Physics > 45101-(S2) Master Thesis
Depositing User: Luluk kurniawati
Date Deposited: 13 Aug 2024 02:47
Last Modified: 29 Aug 2024 05:38
URI: http://repository.its.ac.id/id/eprint/114886

Actions (login required)

View Item View Item