Artha, Algio Wijaya (2024) Pemodelan Faktor-Faktor yang Mempengaruhi Persentase Balita Stunting di Provinsi Jawa Timur Menggunakan Regresi Data Panel. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
5003201081-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2026. Download (3MB) | Request a copy |
Abstract
Kehidupan anak-anak sangat bergantung pada asupan nutrisi yang berkualitas. Stunting merupakan permasalahan gizi yang terdeteksi melalui pengukuran panjang atau tinggi badan balita, yang kemudian dibandingkan dengan standar untuk menilai apakah hasilnya berada di bawah tingkat normal. Stunting dapat memiliki dampak jangka panjang, seperti menurunnya kemampuan kognitif dan pencapaian belajar, penurunan daya tahan tubuh yang dapat menyebabkan rentan terhadap penyakit, dan sebagainya. Pemerintah memiliki target untuk mengurangi angka stunting menjadi 14 persen pada tahun 2024, namun pada tahun 2022, prevalensi stunting di Jawa Timur masih mencapai 19,2 persen. Untuk memahami faktor-faktor penyebab persentase stunting pada anak di Jawa Timur dari tahun 2018 hingga 2022, penelitian ini menggunakan metode regresi data panel. Regresi data panel adalah suatu metode yang melibatkan penggabungan data cross-section dan time series dalam analisis regresi. Variabel yang digunakan dalam penelitian ini adalah persentase pemberian ASI eksklusif, persentase rumah tangga yang memiliki akses terhadap sanitasi layak, persentase kunjungan ibu hamil (K4), dan persentase pemberian imunisasi dasar lengkap pada bayi dengan 29 kabupaten dan 9 kota di Jawa Timur sebagai unit penelitian. Hasil penelitian ini menunjukkan tidak terdapat multikolinearitas antar variabel independen. Model estimasi terbaik yang diperoleh untuk menganalisis persentase stunting pada balita di Jawa Timur adalah FEM antara individu dan waktu. Variabel yang berpengaruh signifikan adalah kunjungan ibu hamil K-4 dengan koefisien determinasi yang disesuaikan sebesar 78,67%.
=====================================================================================================================================
Children's lives depend greatly on quality nutritional intake. Stunting is a nutritional problem that is detected by measuring the length or height of a toddler, which is then compared with standards to assess whether the results are below normal levels. Stunting can have long-term impacts, such as decreased cognitive abilities and learning achievements, decreased body resistance which can make it susceptible to disease, and so on. The government has a target to reduce the stunting rate to 14 percent by 2024, but in 2022, the prevalence of stunting in East Java will still reach 19.2 percent. To understand the factors causing the percentage of stunting in children in East Java from 2018 to 2022, this research uses a panel data regression method. Several studies related to stunting have been carried out using various statistical methods and panel data regression has also been widely applied in previous research. Panel data regression is a method that involves combining cross-section and time series data in regression analysis. The variables used in this study were the percentage of exclusive breastfeeding, the percentage of households that had access to proper sanitation, the percentage of visits from pregnant women (K4), and the percentage of complete basic immunization for babies. with 29 districts and 9 cities in East Java as research units. The results of this study showed that there was no multicollinearity between independent variables. The best estimation model obtained to analyze the percentage of stunting in toddlers in East Java is FEM between individuals and time. The variable that had a significant effect was the visit of pregnant women K-4 with an adjusted R^2 of 78.67%.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | children, panel data regression, stunting. balita, regresi data panel, stunting. |
Subjects: | H Social Sciences > HA Statistics > HA31.3 Regression. Correlation |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Algio Wijaya Artha |
Date Deposited: | 15 Aug 2024 03:07 |
Last Modified: | 15 Aug 2024 03:07 |
URI: | http://repository.its.ac.id/id/eprint/115395 |
Actions (login required)
View Item |