Sistem Pemantauan Dan Klasifikasi Indeks Kualitas Udara Di Lingkungan Pembangkitan Menggunakan Metode K-Nearest Neighbor

Baskara, Rendi Paguita (2024) Sistem Pemantauan Dan Klasifikasi Indeks Kualitas Udara Di Lingkungan Pembangkitan Menggunakan Metode K-Nearest Neighbor. Diploma thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 2040201048-Undergraduate_Thesis.pdf] Text
2040201048-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2026.

Download (3MB) | Request a copy

Abstract

Pencemaran udara di Jakarta dan sekitarnya (Jabodetabek), terutama di Tangerang, menjadi perhatian utama pemerintah. Fokus khusus pada kontribusi Pembangkit Listrik Tenaga Uap (PLTU) berbahan bakar batubara sebagai salah satu penyebab utama. Kualitas udara yang buruk, terutama di daerah sekitar PLTU, disoroti oleh organisasi lingkungan. Diperkirakan bahwa PLTU, bersama dengan transportasi, menyumbang sebagian besar polusi udara di Jakarta dengan presentase 30 - 40%. Dalam rangka mendukung Sustainability Development Goals (SDGs) net zero emission, diusulkan pembangunan sistem Pemantauan Kualitas Udara di Lingkungan PLTU Banten 3 Lontar berbasis Internet of Things (IoT). PLTU telah mematuhi peraturan emisi yang ditetapkan Kementerian Lingkungan Hidup dan Kehutanan pada Indeks Standar Kualitas Udara. Sistem baru ini akan memberikan pemantauan secara real-time dan online, memberikan data komprehensif terkait kualitas udara, dan memungkinkan partisipasi publik melalui aplikasi web. Dengan menerapkan sistem pemantauan secara online, dapat dihipotesiskan bahwa data yang diperoleh akan memberikan pemahaman yang lebih mendalam tentang kualitas udara di sekitar PLTU Banten 3 Lontar. Hasil pembacaan nilai konsentrasi alat yang mencangkup sensor yang mendeteksi gas CO, NO², SO², partikel PM 2.5, dan sensor suhu serta kelembapan DHT22 dengan tingkat akurasi 98,9% . Alat ini dapat digunakan sebagai dasar untuk mendukung upaya perusahaan dalam mencapai net zero emission dan melakukan klasifikasi kualitas udara sensor menggunakan machine learning K-Nearest Neighbor dengan akurasi 92%.
==================================================================================================================================
Air pollution in Jakarta and its surroundings (Jabodetabek), especially in Tangerang, is a major concern for the government. Special focus on the contribution of coal-fired Steam Power Plants (PLTU) as one of the main causes. Poor air quality, especially in areas around the power plant, has been highlighted by environmental organizations. It is estimated that PLTUs, together with transportation, contribute to the majority of air pollution in Jakarta with a percentage of 30 - 40%. In order to support the Sustainability Development Goals (SDGs) net zero emissions, it is proposed to build an Air Quality Monitoring system in the PLTU Banten 3 Lontar environment based on Internet of Things (IoT). The PLTU has complied with the emission regulations set by the Ministry of Environment and Forestry in the Air Quality Standard Index. The new system will provide real-time and online monitoring, provide comprehensive data regarding air quality, and enable public participation via a web application. By implementing an online monitoring system, it can be hypothesized that the data obtained will provide a deeper understanding of the air quality around PLTU Banten 3 Lontar. The results of reading the concentration value of the tool include a sensor that detects CO, NO², SO² gas, PM 2.5 particles, and a DHT22 temperature and humidity sensor with an accuracy level of 98.9%. This tool can be used as a basis to support company efforts to achieve net zero emissions and carry out sensor air quality classification using K-Nearest Neighbor machine learning with 92% accuracy.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Emisi GRK, IoT, Kualitas Udara, Net Zero Emission, PLTU Banten 3 Lontar, K-Nearest Neighbor.
Subjects: T Technology > T Technology (General)
T Technology > T Technology (General) > T55 Industrial Safety
T Technology > T Technology (General) > T57.5 Data Processing
T Technology > T Technology (General) > T57.6 Operations research--Mathematics. Goal programming
T Technology > T Technology (General) > T58.6 Management information systems
Divisions: Faculty of Vocational > 36304-Automation Electronic Engineering
Depositing User: Rendi Paguita Baskara
Date Deposited: 19 Aug 2024 04:15
Last Modified: 19 Aug 2024 04:15
URI: http://repository.its.ac.id/id/eprint/115461

Actions (login required)

View Item View Item