Putri, Anneu Tsabita and Darmawan, Dewangga Dika (2024) Migrasi Platform Visualisasi dan Implementasi RFM serta Cohort Analysis untuk Mendukung Analisis Data E-Commerce PT Paragon Technology and Innovation. Project Report. [s.n.], [s.l.]. (Unpublished)
Text
5025211026_5025211109-Project_Report.pdf - Accepted Version Download (669kB) |
Abstract
Seiring dengan meningkatnya kebutuhan perusahaan dalam mengelola data dan analisis untuk mendukung pengambilan keputusan, platform visualisasi data menjadi alat penting, termasuk bagi PT Paragon Technology and Innovation. Dalam rangka mendukung pengembangan bisnis di sektor E-Commerce, perusahaan ini membutuhkan analisis mendalam terhadap pola berbelanja pelanggan melalui implementasi RFM analysis dan cohort analysis. Namun, dengan meningkatnya volume data dan pengguna, platform visualisasi data yang berbasis server on premise menghadapi tantangan dalam hal skalabilitas dan kinerja. Proyek ini bertujuan untuk mengatasi tantangan tersebut dengan memigrasikan platform visualisasi ke lingkungan deployment orchestrator. Dengan pendekatan ini, platform dapat menerapkan auto-scaling dan pemulihan otomatis terhadap container, serta memindahkan database ke layanan cloud-based relational database untuk meningkatkan performa. Hasil implementasi diharapkan mampu mendukung perusahaan dalam mengambil keputusan berbasis data secara efisien, sekaligus mengoptimalkan pengelolaan platform visualisasi untuk mendukung pengembangan bisnis E-Commerce.
============================================================================================================================
As companies increasingly need to manage data and analysis to support decision making, data visualization platforms have become an essential tool, including for PT Paragon Technology and Innovation. In order to support business development in the E-Commerce sector, the company requires in-depth analysis of customer shopping patterns through the implementation of RFM analysis and cohort analysis. However, with the increasing volume of data and users, the on premise server-based data visualization platform faced challenges in terms of scalability and performance. This project aims to address those challenges by migrating the visualization platform to a deployment orchestrator environment. With this approach, the platform can implement auto-scaling and automatic recovery of containers, and move the database to a cloud-based relational database service to improve performance. The implementation results are expected to support companies in making data-driven decisions efficiently, while optimizing the management of visualization platforms to support E-Commerce business development.
Item Type: | Monograph (Project Report) |
---|---|
Uncontrolled Keywords: | Platform Visualisasi, E-Commerce, Analisis RFM, Analisis Kohort, Orkestrator Deployment, Visualization Platform, E-Commerce, RFM Analysis, Cohort Analysis, Deployment Orchestrator |
Subjects: | Q Science > QA Mathematics > QA76 Computer software Q Science > QA Mathematics > QA76.754 Software architecture. Computer software Q Science > QA Mathematics > QA76.76.S64 Software maintenance. Q Science > QA Mathematics > QA76.9.D37 Data warehousing. Q Science > QA Mathematics > QA76.9D338 Data integration |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55201-(S1) Undergraduate Thesis |
Depositing User: | DEWANGGA DIKA DARMAWAN |
Date Deposited: | 06 Jan 2025 00:32 |
Last Modified: | 06 Jan 2025 00:32 |
URI: | http://repository.its.ac.id/id/eprint/116149 |
Actions (login required)
View Item |