Pemodelan Faktor yang Memengaruhi Rasio Gini di Provinsi Jawa Barat Menggunakan Regresi Data Panel

Pretisya, Silvia Putri (2025) Pemodelan Faktor yang Memengaruhi Rasio Gini di Provinsi Jawa Barat Menggunakan Regresi Data Panel. Diploma thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of PA_Silvia Putri Pretisya_2043211016.pdf] Text
PA_Silvia Putri Pretisya_2043211016.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2027.

Download (3MB) | Request a copy
[thumbnail of 2043211016-Undergraduate_Thesis.pdf] Text
2043211016-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2027.

Download (3MB) | Request a copy

Abstract

Ketimpangan pendapatan merupakan masalah yang dihadapi oleh banyak negara, termasuk Indonesia. Ketimpangan ini mencerminkan ketidakmerataan distribusi pendapatan antara kelompok masyarakat berpendapatan tinggi dan rendah, yang diukur menggunakan rasio gini. Salah satu provinsi dengan ketimpangan pendapatan tinggi adalah Provinsi Jawa Barat, di mana angka rasio gini pada tahun 2023 tercatat sebesar 0,425. Nilai tersebut melampaui target Rencana Pembangunan Jangka Menengah Nasional (RPJMN) 2020–2024 yang ditetapkan antara 0,360–0,374. Tingginya angka rasio gini di Provinsi Jawa Barat tidak sejalan dengan fakta bahwa Provinsi Jawa Barat sebagai pusat industri manufaktur terbesar di Indonesia, yang seharusnya mampu mendorong pemerataan ekonomi melalui penyediaan lapangan kerja dan peningkatan pendapatan masyarakat. Penelitian ini bertujuan untuk menganalisis faktor-faktor yang memengaruhi rasio gini di Provinsi Jawa Barat menggunakan regresi data panel pada 27 kabupaten/kota selama periode 2020–2022. Hasil penelitian menunjukkan bahwa angka rasio gini tertinggi di Provinsi Jawa Barat berada di Kota Cirebon, sedangkan rasio gini terendah berada di Kabupaten Indramayu. Berdasarkan pemodelan menggunakan regresi data panel, didapatkan bahwa model random effect merupakan model terbaik dengan faktor-faktor yang memengaruhi rasio gini di Provinsi Jawa Barat yaitu, persentase penduduk miskin, Tingkat Partisipasi Angkatan Kerja (TPAK), Rata-rata Lama Sekolah (RLS), PDRB per kapita atas dasar harga konstan, dan Angka Harapan Hidup (AHH) dengan kebaikan model sebesar 57,66% dan 42,34% lainnya dipengaruhi oleh variabel lain diluar model serta memiliki nilai RMSE sebesar 0,056 yang tergolong kecil yaitu mendekati nilai nol.
==================================================================================================================================
Income inequality is a persistent issue faced by many countries, including Indonesia. This inequality reflects the unequal distribution of income between high-income and low-income groups, measured by the Gini ratio. One of the provinces with high income inequality is West Java, where the Gini ratio in 2023 was recorded at 0.425. This value exceeds the National Medium-Term Development Plan (RPJMN) 2020–2024 target, set between 0.360–0.374. The high Gini ratio in West Java contrasts with the fact that the province is Indonesia's largest manufacturing hub, which theoretically should promote economic equity through job creation and income distribution. However, the persistence of income inequality suggests structural barriers to achieving equitable distribution of economic benefits. This study aims to analyze the factors affecting the Gini ratio in West Java Province using panel data regression for 27 regencies/cities during the 2020–2022 period. The results show that the highest Gini ratio in West Java Province was observed in Cirebon City, while the lowest Gini ratio was in Indramayu Regency. Based on the panel data regression modeling, the random effects model was found to be the best model. The factors influencing the Gini ratio in West Java Province include the percentage of poor population, Labor Force Participation Rate (LFPR), Average Years of Schooling (AYS), Gross Regional Domestic Product (GRDP) per capita at constant prices, and Life Expectancy Rate (LER). The model's goodness of fit was 57.66%, with the remaining 42.34% influenced by variables outside the model. The Root Mean Square Error (RMSE) value of 0.056, which is close to zero, indicates a good predictive ability of the model.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Provinsi Jawa Barat, Random Effect Model, Rasio Gini, Regresi Data Panel, Gini Ratio, Panel Data Regression, West Java Province
Subjects: Q Science
Q Science > QA Mathematics > QA278.3 Structural equation modeling.
Q Science > QA Mathematics > QA401 Mathematical models.
Divisions: Faculty of Vocational > 49501-Business Statistics
Depositing User: Silvia Putri Pretisya
Date Deposited: 16 Jan 2025 07:36
Last Modified: 16 Jan 2025 07:36
URI: http://repository.its.ac.id/id/eprint/116357

Actions (login required)

View Item View Item