Briliyanti, Lenny Putri (2025) Analisis Faktor-Faktor yang Memengaruhi Kemiskinan di Papua Menggunakan Geographically Weighted Regression. Diploma thesis, Institut Teknologi Sepuluh Nopember.
Text
2043211014-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2027. Download (2MB) | Request a copy |
Abstract
Kemiskinan masih menjadi permasalahan utama yang terjadi di berbagai negara, termasuk Indonesia. Berdasarkan laporan Badan Pusat Statistik Indonesia, Pada tahun 2023 Papua memiliki persentase penduduk miskin tertinggi, dimana di Provinsi Papua mencapai 26,03% dan di Papua Barat 20,49%. Selain itu, 11 kabupaten/kota di Provinsi Papua Barat dan 24 kabupaten/kota di Provinsi Papua memiliki persentase penduduk miskin dengan kategori sangat tinggi. Keadaan geografis yang sulit, seperti wilayah perkotaan dan pedesaan, menyebabkan keragaman persentase penduduk miskin di Papua tinggi. Dengan adanya permasalahan tersebut, dirasa penting untuk mendapat pemodelan untuk dapat mengatahui variabel prediktor apa saja yang memengaruhi persentase penduduk miskin di Papua dengan memerhatikan aspek spasial dengan pendekatan Geographically Weighted Regression. Tujuan yang akan dicapai adalah mengetahui faktor-faktor yang memengaruhi kemiskinan di setiap kabupaten/kota di Papua menggunakan metode Geographically Weighted Regression. Data yang digunakan merupakan data sekunder yang diperoleh dari publikasi website BPS Provinsi Papua dan Provinsi Papua Barat dengan unit observasi sebanyak 42 kabupaten/kota di Papua. Hasil analisis menunjukkan bahwa pemetaan tingkat kemiskinan dengan metode GWR menghasilkan 5 kelompok berdasarkan kesamaan variabel yang berpengaruh signifikan, dimana mayoritas faktor yang berpengaruh signifikan di kabupaten/kota di Papua bagian timur hingga barat adalah laju pertumbuhan PDRB dan persentase rumah tangga dengan akses sanitasi layak. Angka melek huruf hanya berpengaruh terhadap kemiskinan pada kabupaten/kota di Papua bagian barat. Seluruh variabel yang berpengaruh signifikan terhadap kemiskinan di Papua memiliki kebaikan model sebesar 79,41%.
=================================================================================================================================
Poverty is still a major problem that occurs in various countries, including Indonesia. Based on a report by the Indonesian Central Statistics Agency, in 2023 Papua has the highest percentage of poor people, where in Papua Province it reaches 26.03% and in West Papua 20.49%. In addition, 11 districts/cities in West Papua Province and 24 districts/cities in Papua Province have a very high percentage of poor people. Difficult geographical circumstances, such as urban and rural areas, cause the diversity of the percentage of poor people in Papua to be high. With these problems, it is important to get modeling to be able to know what predictor variables affect the percentage of poor people in Papua by paying attention to spatial aspects with the Geographically Weighted Regression approach. The goal to be achieved is to find out the factors that affect poverty in each district/city in Papua using the Geographically Weighted Regression method. The data used is secondary data obtained from the publication of the BPS website of Papua Province and West Papua Province with observation units of 42 districts/cities in Papua. The results of the analysis showed that the mapping of poverty levels using the GWR method produced 5 groups based on the similarity of variables that had a significant effect, where the majority of factors that had a significant influence in districts/cities in eastern to western Papua were the GDP growth rate and the percentage of households with access to proper sanitation. Literacy rates only affect poverty in districts/cities in western Papua. All variables that have a significant effect on poverty in Papua have a model goodness of 79.41%.
Item Type: | Thesis (Diploma) |
---|---|
Uncontrolled Keywords: | Geographically Weighted Regression, Papua, Persentase Penduduk Miskin, Percentage of Poor Population |
Subjects: | Q Science Q Science > QA Mathematics > QA278.2 Regression Analysis. Logistic regression Q Science > QA Mathematics > QA401 Mathematical models. |
Divisions: | Faculty of Vocational > 49501-Business Statistics |
Depositing User: | Lenny Putri Briliyanti |
Date Deposited: | 20 Jan 2025 01:00 |
Last Modified: | 20 Jan 2025 01:00 |
URI: | http://repository.its.ac.id/id/eprint/116414 |
Actions (login required)
View Item |