Souisa, Gilbert Alvaro (2024) Deteksi Dan Penanganan Outlier Pada Spatial Autoregressive Model Dengan Variance Shift Outlier Model (VSOM) (Studi Kasus: Data PDRB Sektor Pertanian Di Pulau Jawa). Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
6003222002-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2027. Download (2MB) | Request a copy |
Abstract
Data PDRB sektor pertanian memiliki karakteristik spasial dengan ketergantungan antarwilayah, sehingga model Spatial Autoregressive (SAR) sering digunakan untuk menganalisisnya. Namun, keberadaan outlier dapat mempengaruhi keakuratan hasil analisis SAR. Pengujian spatial dependency menggunakan Moran’s I mengonfirmasi adanya dependensi spasial pada data PDRB sektor pertanian di Pulau Jawa. Oleh karena itu, penelitian ini bertujuan untuk mendeteksi dan menangani outlier pada data PDRB sektor pertanian menggunakan metode Variance Shift Outlier Model (VSOM). Metode VSOM berfokus pada deteksi dan penanganan outlier melalui pendekatan varians dalam model SAR. Variabel yang digunakan dalam penelitian ini meliputi: PDRB sektor pertanian (Y), jumlah tenaga kerja sektor pertanian (X1), upah riil sektor pertanian (X2), dan investasi sektor pertanian (X3). Hasil penelitian menunjukkan adanya 6 observasi yang terindikasi sebagai outlier melalui pendekatan bootstrap. Penanganan dengan VSOM menghasilkan nilai MSE yang lebih kecil, menunjukkan kemampuan yang lebih baik dalam mendeteksi dan mengakomodasi outlier. Selain itu, nilai Adjusted R² meningkat menjadi 0,7050651, lebih besar dibandingkan model SAR tanpa penanganan outlier. Dengan demikian, VSOM efektif dalam meningkatkan performa model SAR pada analisis data PDRB sektor pertanian di Pulau Jawa.
==================================================================================================
The agricultural sector GRDP data exhibits spatial characteristics with inter-regional dependencies, making the Spatial Autoregressive (SAR) model a suitable tool for its analysis. However, the presence of outliers can compromise the accuracy of SAR analysis results. Spatial dependency testing using Moran’s I confirms the existence of spatial dependence in the agricultural sector GRDP data on Java Island. Therefore, this study aims to detect and handle outliers in the agricultural sector GRDP data using the Variance Shift Outlier Model (VSOM). The VSOM method focuses on detecting and managing outliers through a variance-based approach within the SAR model. The variables used in this study include: agricultural sector GRDP (Y), the number of workers in the agricultural sector (X1), real wages in the agricultural sector (X2), and investment in the agricultural sector (X3). The results indicate that 6 observations were identified as outliers through the bootstrap approach. Handling outliers with VSOM yielded a lower MSE, demonstrating its effectiveness in detecting and accommodating outliers. Additionally, the Adjusted R² value increased to 0.7050651, higher than the SAR model without outlier handling. Thus, VSOM proves effective in improving the performance of the SAR model for analyzing agricultural sector GRDP data on Java Island
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Outlier, PDRB, Pertanian, SAR, VSOM. |
Subjects: | H Social Sciences > HA Statistics > HA30.6 Spatial analysis |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49101-(S2) Master Thesis |
Depositing User: | GILBERT ALVARO SOUISA |
Date Deposited: | 23 Jan 2025 00:39 |
Last Modified: | 23 Jan 2025 00:39 |
URI: | http://repository.its.ac.id/id/eprint/116635 |
Actions (login required)
View Item |