Analisis Segmentasi Pelanggan Dengan Metode Customer Lifetime Value (Studi Kasus Umkm Fashion Pakaian)

Salsabila, Najia (2024) Analisis Segmentasi Pelanggan Dengan Metode Customer Lifetime Value (Studi Kasus Umkm Fashion Pakaian). Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6032201028-Master_Thesis.pdf] Text
6032201028-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2027.

Download (3MB) | Request a copy

Abstract

Penelitian ini bertujuan menganalisis segmentasi pelanggan menggunakan metode Customer Lifetime Value (CLV) pada UMKM di sektor fashion pakaian. Metode ini digunakan untuk memahami nilai jangka panjang pelanggan dan mengidentifikasi segmen yang paling menguntungkan. Dalam industri fashion, khususnya di kalangan UMKM, pemahaman mendalam terhadap pelanggan dapat meningkatkan efektivitas strategi pemasaran dan retensi pelanggan. Data penelitian berasal dari transaksi penjualan dan interaksi pelanggan selama 10 bulan, melibatkan 18.485 pelanggan dari database penjualan UMKM. CLV dihitung untuk mengevaluasi kontribusi pelanggan terhadap pendapatan perusahaan dalam periode tertentu. Proses analisis memanfaatkan perangkat lunak statistik dan data mining, seperti Excel dan SPSS. Segmentasi pelanggan dilakukan dengan k-means clustering, yang mengelompokkan pelanggan berdasarkan karakteristik nilai CLV mereka. Hasil penelitian mengidentifikasi empat segmen utama pelanggan: best, spender, frequent, dan uncertain. Pelanggan kategori best memiliki nilai CLV tertinggi dan dianggap paling menguntungkan, sementara kategori lainnya menunjukkan potensi berbeda yang dapat dioptimalkan dengan strategi yang sesuai. Penelitian ini menekankan pentingnya fokus pada pelanggan kategori best melalui pemasaran personal dan program loyalitas untuk meningkatkan retensi pelanggan. Dengan strategi yang tepat, UMKM dapat mengalokasikan sumber daya pemasaran secara lebih efektif, meningkatkan daya saing, dan mendorong profitabilitas jangka panjang.
========================================================================================================================
This study aims to analyze customer segmentation using the Customer Lifetime Value (CLV) method in small and medium-sized enterprises (SMEs) in the fashion clothing sector. This method is utilized to understand the long-term value of customers and identify the most profitable segments. In the fashion industry, especially among SMEs, a deep understanding of customers can enhance the effectiveness of marketing strategies and customer retention. The research data were derived from sales transactions and customer interactions over a period of 10 months, involving 18,485 customers from the SMEs' sales database. CLV was calculated to evaluate the contribution of each customer to the company’s revenue within a specific period. The analysis process utilized statistical and data mining tools, such as Excel and SPSS. Customer segmentation was performed using k-means clustering, grouping customers based on the characteristics of their CLV values. The results identified four main customer segments: best, spender, frequent, and uncertain. Customers in the best category had the highest CLV and were deemed the most profitable, while the other categories demonstrated varying potentials that could be optimized with appropriate strategies. The study highlights the importance of focusing on best customers through personalized marketing and loyalty programs to enhance customer retention. With the right strategies, SMEs can allocate marketing resources more effectively, improve competitiveness, and drive long-term profitability.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Segmentasi Pelanggan, Customer Lifetime Value, Retensi Pelanggan, Strategi Pemasaran, Customer Segmentation, Customer Retention, Marketing Strategies
Subjects: T Technology > T Technology (General) > T58.6 Management information systems
Divisions: Interdisciplinary School of Management and Technology (SIMT) > 61101-Master of Technology Management (MMT)
Depositing User: Najia Salsabila
Date Deposited: 30 Jan 2025 04:31
Last Modified: 30 Jan 2025 04:31
URI: http://repository.its.ac.id/id/eprint/117102

Actions (login required)

View Item View Item