Analisis Numerik Pengaruh Metode Pendinginan Water Cooling Terhadap Distribusi Temperatur dan Besar Efisiensi Pada Sistem Photovoltaic Thermal

Putri, Mega Widias (2025) Analisis Numerik Pengaruh Metode Pendinginan Water Cooling Terhadap Distribusi Temperatur dan Besar Efisiensi Pada Sistem Photovoltaic Thermal. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6007221046-Master_Thesis.pdf] Text
6007221046-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until April 2027.

Download (5MB) | Request a copy

Abstract

Permintaan energi terus meningkat seiring dengan kemajuan teknologi, dengan bahan bakar fosil masih menjadi pilihan utama, meskipun memiliki banyak dampak negatif terhadap lingkungan. Oleh karena itu, diperlukan peralihan menuju penggunaan energi terbarukan, terutama tenaga surya. Teknologi tenaga surya terus berkembang dengan berbagai jenis panel surya, termasuk photovoltaic (PV), yang mengubah sinar matahari menjadi energi listrik. Namun sebagian radiasi diserap dan menyebabkan peningkatan temperatur, yang berdampak negatif pada efisiensi dan keandalan PV. Untuk mencegah temperatur berlebihan, berbagai sistem pendingin telah dikembangkan, salah satunya adalah sistem Photovoltaic Thermal (PVT). Sistem PVT menggabungkan panel PV dengan kolektor termal untuk menghasilkan listrik dan energi panas secara bersamaan, meningkatkan efisiensi keseluruhan. Penelitian ini bertujuan untuk menganalisis secara numerik performa sistem PVT dengan beberapa variasi desain geometris, ukuran diameter tube, dan mass flow rate. Geometri pertama menggunakan skema kolektor PVT dengan satu aliran berbentuk serpentine, dan geometri kedua menggunakan skema kolektor PVT dengan tiga aliran berbentuk serpentine. Ukuran diameter dalam tube adalah 13 mm, 15 mm, dan 17 mm dengan mass flow rate air sebesar 0,001 kg/s, 0,005 kg/s dan 0,009 kg/s. Simulasi dilakukan dalam tiga tahap antara lain pre-processing, processing, dan post-processing. Pada tahap pre-processing akan dilakukan pembuatan model, meshing hingga set-up simulasi. Tahap processing merupakan proses simulasi, dan pada post processing akan dilakukan pengambilan data kontur temperatur. Hasil penelitian menunjukkan bahwa sistem pendinginan terbaik diperoleh pada desain tiga aliran serpentine dengan mass flow rate 0,009 kg/s dan diameter tube 13 mm. Pendinginan ini mampu menurunkan temperatur panel fotovoltaik hingga 39,46°C dengan efisiensi total sebesar 67,41%. Sebaliknya, sistem dengan satu aliran serpentine hanya mampu menurunkan temperatur panel fotovoltaik hingga 41,005°C dengan efisiensi total sebesar 55,44%. Semakin besar diameter tube, efisiensi termal menurun akibat penurunan heat transfer coefficient, yang mengurangi laju perpindahan panas dari permukaan panel fotovoltaik ke fluida. Sebaliknya, peningkatan mass flow rate menghasilkan penurunan temperatur yang lebih signifikan dan peningkatan efisiensi termal. Efisiensi elektrikal tetap stabil meskipun ada perubahan diameter tube dan mass flow rate karena efisiensi ini lebih dipengaruhi oleh temperatur panel fotovoltaik, sementara sistem pendinginan hanya berperan menjaga temperatur agar tidak menurunkan kinerja modul fotovoltaik
=================================================================================================================================
Energy demand continues to increase along with technological advances, with fossil fuels still the primary choice despite many negative environmental impacts. Therefore, a shift towards renewable energy is needed, especially solar power. Solar power technology continues to develop with various solar panels, including photovoltaic (PV), which convert sunlight into electrical energy. However, some radiation is absorbed and causes an increase in temperature, which has a negative impact on the efficiency and reliability of PV. Various cooling systems have been developed to prevent excessive temperatures, including the Photovoltaic Thermal (PVT) system. The PVT system combines PV panels with thermal collectors to produce electricity and heat energy simultaneously, increasing overall efficiency. This study aims to numerically analyze the performance of the PVT system with several variations in geometric design, tube diameter size, and mass flow rate. The first geometry uses a PVT collector scheme with one serpentine flow, and the second geometry uses a PVT collector scheme with three serpentine flows. The inner diameter of the tube is 13 mm, 15 mm, and 17 mm, with a water mass flow rate of 0.001 kg/s, 0.005 kg/s, and 0.009 kg/s. The simulation is carried out in three stages: pre-processing, processing, and post-processing. In the pre-processing stage, modeling, meshing, and simulation set-up will be carried out. The processing stage is a simulation process, and in post-processing, temperature contour data will be taken. The study's results showed that the best cooling system was obtained in designing three serpentine flows with a mass flow rate of 0.009 kg/s and a tube diameter of 13 mm. This cooling can reduce the temperature of the photovoltaic panel by 39.46°C with a total efficiency of 67.41%. In contrast, the system with one serpentine flow can only reduce the temperature of the photovoltaic panel by 41.005°C with a total efficiency of 55.44%. The larger the tube diameter, the thermal efficiency decreases due to the decrease in the heat transfer coefficient, which reduces the rate of heat transfer from the surface of the photovoltaic panel to the fluid. Conversely, increasing the mass flow rate results in a more significant decrease in temperature and an increase in thermal efficiency. The electrical efficiency remains stable despite changes in the tube diameter and mass flow rate because the temperature of the photovoltaic panel more influences this efficiency. At the same time, the cooling system only plays a role in maintaining the temperature so as not to reduce the performance of the photovoltaic module.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Photovoltaic, Panel Surya, Photovoltaic Thermal, Metode Pendinginan. Photovoltaic, Solar Panels, Photovoltaic Thermal, Cooling System.
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ810.5 Solar energy
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21101-(S2) Master Thesis
Depositing User: Mega Widias Putri
Date Deposited: 04 Feb 2025 09:48
Last Modified: 04 Feb 2025 09:48
URI: http://repository.its.ac.id/id/eprint/118188

Actions (login required)

View Item View Item