Numerical Study Of The Effect By Adding Heat Sink On Prismatic Type Battery Cell Module With J-Type Battery Thermal Management System

Dirgantara, Yan Bagas (2025) Numerical Study Of The Effect By Adding Heat Sink On Prismatic Type Battery Cell Module With J-Type Battery Thermal Management System. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007201128-Undergradute_Thesis.pdf] Text
5007201128-Undergradute_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2027.

Download (3MB) | Request a copy

Abstract

Peralihan ke kendaraan listrik (EV) sangat penting bagi produsen, yang bertujuan untuk meningkatkan posisi pasar mereka dan mengurangi emisi gas rumah kaca. Kementerian Perhubungan telah memperkenalkan kebijakan untuk mempromosikan adopsi EV, dengan mengharapkan lebih dari 122.630 pendaftaran pada Januari 2024. Kementerian Energi dan Sumber Daya Mineral mengantisipasi penghematan yang signifikan dan pengurangan emisi karbon pada tahun 2030, meskipun tantangan dalam teknologi baterai tetap ada, termasuk masalah keselamatan dan biaya produksi yang tinggi. Studi ini berfokus pada efek penggabungan heat sink ke dalam modul sel baterai prismatik, menggunakan sistem pendingin tipe J. Simulasi dinamika fluida komputasional akan dilakukan dengan ANSYS FLUENT, dengan asumsi keluaran panas konstan dari baterai dan udara pendingin pada 4 m/s dan 299,15 K. Penelitian ini akan mengevaluasi tiga desain heat sink: sirip lurus, sirip pin dengan tinggi seragam, dan sirip pin dengan tinggi bervariasi. Penggabungan heat sink diantisipasi untuk mengurangi suhu puncak baterai dan meningkatkan homogenitas suhu. Meskipun demikian, peningkatan ini juga dapat menambah perbedaan tekanan dan kebutuhan energi kipas. Hasil dari penelitian ini terdiri dari plot kontur yang menggambarkan suhu baterai, kecepatan fluida, dan distribusi tekanan fluida untuk mengidentifikasi penyesuaian optimal yang menghasilkan peningkatan suhu yang diminimalkan di samping peningkatan tekanan yang dapat diabaikan. Data tersebut mengungkapkan bahwa model yang paling efektif adalah Model 4, yang dicirikan oleh penukar panas berbentuk sirip pin dengan ketinggian yang bervariasi. Secara khusus, dalam konfigurasi ini, suhu maksimal menurun sebesar 11,175 K relatif terhadap skenario dasar, disertai dengan laju aliran fluida yang dipercepat dan penurunan tekanan yang berkurang serta daya kipas masing-masing sebesar 135,0833 Pa dan 0,7565 W, melampaui yang ditunjukkan oleh heat sink alternatif
===================================================================================================================================
The shift to electric vehicles (EVs) is crucial for manufacturers, aiming to enhance their market position and reduce greenhouse gas emissions. The Ministry of Transportation has introduced policies to promote EV adoption, expecting over 122,630 registrations by January 2024. The Ministry of Energy and Mineral Resources anticipates significant savings and reduced carbon emissions by 2030, although challenges in battery technology remain, including safety issues and high production costs. This study focuses on the effects of incorporating a heat sink into a prismatic battery cell module, using a J-type cooling system. Computational fluid dynamics simulations will be conducted with ANSYS FLUENT, assuming a constant heat output from the battery and cooling air at 4 m/s and 299.15 K. The research will evaluate three heat sink designs: straight fins, pin fins of uniform height, and pin fins of varying heights. The incorporation of a heat sink is anticipated to diminish the peak temperature of the battery and elevate temperature homogeneity. Nevertheless, this enhancement might also augment the pressure differential and fan energy demands. The outcome of this investigation comprises contour plots depicting battery temperature, fluid velocity, and fluid pressure distributions to identify optimal adjustments yielding minimized temperature elevations alongside negligible pressure increments. The data reveal that the most efficacious model is Model 4, characterized by a pin-fin shaped heat exchanger with varied heights. Specifically, in this configuration, the maximal temperature declines by 11.175 K relative to the baseline scenario, accompanied by accelerated fluid flow rates and reduced pressure drops and fan powers at 135.0833 Pa and 0.7565 W, respectively, surpassing those exhibited by alternative heat sink.

Item Type: Thesis (Other)
Uncontrolled Keywords: ANSYS, Battery Thermal Management System, Heatsink, Lithium-Ion
Subjects: T Technology > TJ Mechanical engineering and machinery
T Technology > TJ Mechanical engineering and machinery > TJ263 Heat exchangers
T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2921 Lithium cells.
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Yan Bagas Dirgantara
Date Deposited: 04 Feb 2025 09:38
Last Modified: 04 Feb 2025 09:38
URI: http://repository.its.ac.id/id/eprint/118200

Actions (login required)

View Item View Item