Pemodelan Engine Health Monitoring System Yang Berpengaruh Terhadap Predictive Maintenance Mesin Dengan Parameter RPM, Suhu, dan Tekanan Berbasis PLC

Syahputra, Ridho Al Ghaniyyu (2025) Pemodelan Engine Health Monitoring System Yang Berpengaruh Terhadap Predictive Maintenance Mesin Dengan Parameter RPM, Suhu, dan Tekanan Berbasis PLC. Masters thesis, INSTITUT TEKNOLOGI SEPULUH NOPEMBER.

[thumbnail of 6019231008_Master_Thesis.pdf] Text
6019231008_Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

Teknologi Engine Health Monitoring (EHM) merupakan sistem yang digunakan untuk memantau kondisi mesin secara real-time, sehingga mampu mendeteksi dini adanya anomali yang dapat menyebabkan kegagalan sistem. Penelitian ini mengembangkan model Predictive Maintenance berbasis Programmable Logic Controller (PLC) yang terintegrasi dengan sensor untuk memonitor RPM, suhu, dan tekanan mesin. Sistem ini dirancang untuk meningkatkan efisiensi operasional serta mengurangi risiko kerusakan mesin dengan memberikan peringatan dini melalui Human Machine Interface (HMI). Pemodelan dilakukan dengan menggunakan CX-Programmer untuk pemrograman PLC dan CX-Designer untuk perancangan antarmuka HMI. Hasil simulasi menunjukkan bahwa sistem ini mampu mendeteksi anomali yang terjadi pada mesin, salah satunya adalah peningkatan suhu oli pelumas yang mencapai ≥75°C, dengan mengaktifkan alarm warning, serta melakukan shutdown otomatis saat suhu mencapai ≥80°C. Selain itu, sistem berhasil mengurangi downtime mesin hingga 35% dan meningkatkan efisiensi pemeliharaan dengan mengurangi kebutuhan perbaikan darurat sebesar 25% dibandingkan dengan metode konvensional. Dengan adanya sistem ini, operator dapat melakukan tindakan pencegahan lebih cepat melalui tampilan HMI yang memberikan informasi kondisi mesin secara real-time. Integrasi sensor dengan PLC memungkinkan pemantauan kondisi mesin yang lebih akurat, sehingga dapat mengoptimalkan strategi pemeliharaan berbasis prediksi untuk meningkatkan keandalan dan umur operasional mesin.
========================================================================================================================

Engine Health Monitoring (EHM) technology is a system used to monitor engine conditions in real-time, enabling early detection of anomalies that may lead to system failures. This study develops a Predictive Maintenance model based on Programmable Logic Controller (PLC) integrated with sensors to monitor RPM, temperature, and pressure. The system is designed to enhance operational efficiency and reduce the risk of engine damage by providing early warnings through a Human Machine Interface (HMI). The modeling was conducted using CX-Programmer for PLC programming and CX-Designer for HMI interface design. Simulation results indicate that the system can detect anomalies in the engine, such as lubricant oil temperature reaching ≥75°C, triggering a warning alarm, and performing an automatic shutdown when the temperature reaches ≥80°C. Additionally, the system successfully reduced engine downtime by 35% and improved maintenance efficiency by reducing emergency repair needs by 25% compared to conventional methods. With this system, operators can take preventive actions more quickly through the HMI display that provides real-time information on engine conditions. The integration of sensors with PLC allows for more accurate engine condition monitoring, thereby optimizing predictive maintenance strategies to enhance reliability and operational lifespan of the engine.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Alarm, HMI, Mesin Kapal, PLC, Solusi Perbaikan.
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3070 Automatic control
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7870.23 Reliability. Failures
V Naval Science > VC Naval Maintenance > VC 270-279 Equipment of vessels, supplier,allowances,etc
Divisions: Faculty of Marine Technology (MARTECH) > Marine Engineering > 36101-(S2) Master Theses
Depositing User: Ridho Al Ghaniyyu Syahputra
Date Deposited: 05 Feb 2025 08:19
Last Modified: 05 Feb 2025 08:32
URI: http://repository.its.ac.id/id/eprint/118381

Actions (login required)

View Item View Item